化工学报 ›› 2022, Vol. 73 ›› Issue (1): 284-293.DOI: 10.11949/0438-1157.20211009
毛文发1(),郑赛男2,骆念军2,周静红1(),曹约强1,周兴贵1
收稿日期:
2021-07-20
修回日期:
2021-11-07
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
周静红
作者简介:
毛文发(1995—),男,硕士研究生,基金资助:
Wenfa MAO1(),Sainan ZHENG2,Nianjun LUO2,Jinghong ZHOU1(),Yueqiang CAO1,Xinggui ZHOU1
Received:
2021-07-20
Revised:
2021-11-07
Online:
2022-01-05
Published:
2022-01-18
Contact:
Jinghong ZHOU
摘要:
针对列管式固定床反应器中的单根反应管,采用在接近工业条件下获得的CO氧化偶联制草酸二甲酯动力学方程,建立了一维、二维拟均相模型,并与单管实验结果进行了对比,结果表明一维拟均相反应器模型更能准确描述单管反应器内的CO偶联反应。进一步利用一维拟均相模型模拟计算了操作参数对床层热点温度、反应转化率、产物选择性及床层压降的影响,分析了反应器热点温度对操作参数的敏感性。计算结果表明:冷却介质温度对反应管热点温度、亚硝酸甲酯转化率有较大影响,是需要严格控制的工艺指标;较低的空速容易引起反应器飞温;反应器进口压力、原料气进料温度和反应物组成在计算范围内对反应器热点温度影响相对较小。为了提高偶联反应器的负荷和强化床层内的传热效果,可以将进料空速提高至4000 h-1,同时,可以通过将反应器进口压力增大至500 kPa来降低压缩机能耗。研究结果可为现有列管式CO氧化偶联反应器的改进和工艺优化提供参考。
中图分类号:
毛文发, 郑赛男, 骆念军, 周静红, 曹约强, 周兴贵. 列管固定床反应器内CO氧化偶联制草酸二甲酯反应模拟及优化[J]. 化工学报, 2022, 73(1): 284-293.
Wenfa MAO, Sainan ZHENG, Nianjun LUO, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation and optimization on oxidative coupling reaction of CO to dimethyl oxalate in a tubular fixed bed reactor[J]. CIESC Journal, 2022, 73(1): 284-293.
指标 | 单管实验数据 | 一维拟均相模型计算结果 | 二维拟均相模型计算结果 |
---|---|---|---|
MN转化率/% | 59.5 | 64.89 | 76.06 |
DMO选择性/% | 95.5 | 89.76 | 87.33 |
DMC选择性/% | 3.0 | 3.60 | 3.64 |
MF选择性/% | 1.5 | 6.64 | 9.03 |
DMO时空产率/(g DMO/(g cat?h)) | 0.55 | 0.56 | 0.64 |
热点温度/K | 408.2 | 405.86 | 414.42 |
表1 单管实验数据与一维、二维拟均相模型计算结果对比
Table 1 Comparison of experimental data in single-tubular reactor with one-dimensional and two-dimensional pseudo-homogeneous model results
指标 | 单管实验数据 | 一维拟均相模型计算结果 | 二维拟均相模型计算结果 |
---|---|---|---|
MN转化率/% | 59.5 | 64.89 | 76.06 |
DMO选择性/% | 95.5 | 89.76 | 87.33 |
DMC选择性/% | 3.0 | 3.60 | 3.64 |
MF选择性/% | 1.5 | 6.64 | 9.03 |
DMO时空产率/(g DMO/(g cat?h)) | 0.55 | 0.56 | 0.64 |
热点温度/K | 408.2 | 405.86 | 414.42 |
冷却介质 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
393 | 398.91 | 53.59 | 90.84 | 3.39 | 5.77 |
398 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
403 | 413.86 | 76.50 | 88.50 | 3.80 | 7.70 |
408 | 423.38 | 87.63 | 87.03 | 3.99 | 8.98 |
表2 冷却介质温度对反应器内热点温度和反应器出口MN转化率及产物选择性的影响
Table 2 Effect of coolant temperature on hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
冷却介质 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
393 | 398.91 | 53.59 | 90.84 | 3.39 | 5.77 |
398 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
403 | 413.86 | 76.50 | 88.50 | 3.80 | 7.70 |
408 | 423.38 | 87.63 | 87.03 | 3.99 | 8.98 |
空速/h-1 | 压降/kPa | DMO时空产率/ (g DMO/(g cat?h)) | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|---|
1000 | 7.35 | 0.28 | 423.56 | 99.93 | 86.59 | 3.57 | 9.84 |
2000 | 27.81 | 0.47 | 409.20 | 81.60 | 88.90 | 3.52 | 7.58 |
3000 | 65.71 | 0.56 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
4000 | 134.93 | 0.60 | 404.28 | 51.82 | 90.10 | 3.71 | 6.12 |
表3 空速对反应器内压降、热点温度和反应器出口MN转化率及产物选择性的影响
Table 3 Effect of gas hourly space velocity on pressure drop, hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
空速/h-1 | 压降/kPa | DMO时空产率/ (g DMO/(g cat?h)) | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|---|
1000 | 7.35 | 0.28 | 423.56 | 99.93 | 86.59 | 3.57 | 9.84 |
2000 | 27.81 | 0.47 | 409.20 | 81.60 | 88.90 | 3.52 | 7.58 |
3000 | 65.71 | 0.56 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
4000 | 134.93 | 0.60 | 404.28 | 51.82 | 90.10 | 3.71 | 6.12 |
进口压力/kPa | 压降/kPa | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|
400 | 90.35 | 404.76 | 58.96 | 89.16 | 3.92 | 6.91 |
450 | 65.71 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
500 | 50.91 | 407.03 | 69.87 | 90.20 | 3.35 | 6.44 |
550 | 40.97 | 408.26 | 74.19 | 90.56 | 3.15 | 6.29 |
表4 进口压力对反应器内压降、热点温度和反应器出口MN转化率及产物选择性的影响
Table 4 Effect of inlet feed pressure on pressure drop, hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
进口压力/kPa | 压降/kPa | 热点温度/K | MN转化率/% | DMO选择性/% | DMC选择性/% | MF选择性/% |
---|---|---|---|---|---|---|
400 | 90.35 | 404.76 | 58.96 | 89.16 | 3.92 | 6.91 |
450 | 65.71 | 405.86 | 64.89 | 89.76 | 3.60 | 6.64 |
500 | 50.91 | 407.03 | 69.87 | 90.20 | 3.35 | 6.44 |
550 | 40.97 | 408.26 | 74.19 | 90.56 | 3.15 | 6.29 |
MN-CO-NO/ %(vol) | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
12-25-4 | 408.88 | 71.53 | 90.42 | 3.55 | 6.03 |
12-25-8 | 405.25 | 62.98 | 89.55 | 3.61 | 6.84 |
12-25-12 | 403.67 | 56.58 | 88.77 | 3.66 | 7.57 |
12-20-8 | 403.53 | 53.41 | 87.36 | 4.67 | 7.97 |
12-10-8 | 400.64 | 31.8 | 77.47 | 9.61 | 12.92 |
表5 反应组成对反应器热点、转化率和选择性的影响
Table 5 Effect of reactant composition on hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
MN-CO-NO/ %(vol) | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
12-25-4 | 408.88 | 71.53 | 90.42 | 3.55 | 6.03 |
12-25-8 | 405.25 | 62.98 | 89.55 | 3.61 | 6.84 |
12-25-12 | 403.67 | 56.58 | 88.77 | 3.66 | 7.57 |
12-20-8 | 403.53 | 53.41 | 87.36 | 4.67 | 7.97 |
12-10-8 | 400.64 | 31.8 | 77.47 | 9.61 | 12.92 |
进料 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
390 | 405.62 | 64.52 | 89.79 | 3.59 | 6.61 |
395 | 405.86 | 64.89 | 89.76 | 3.6 | 6.64 |
400 | 406.38 | 65.34 | 89.71 | 3.61 | 6.68 |
405 | 407.64 | 65.9 | 89.64 | 3.63 | 6.72 |
表6 进料温度对反应器热点温度、转化率和选择性的影响
Table 6 Effect of feed gas temperature on hot-spot temperature, MN conversion and product selectivities at the outlet of reactor
进料 温度/K | 热点 温度/K | MN 转化率/% | DMO 选择性/% | DMC 选择性/% | MF 选择性/% |
---|---|---|---|---|---|
390 | 405.62 | 64.52 | 89.79 | 3.59 | 6.61 |
395 | 405.86 | 64.89 | 89.76 | 3.6 | 6.64 |
400 | 406.38 | 65.34 | 89.71 | 3.61 | 6.68 |
405 | 407.64 | 65.9 | 89.64 | 3.63 | 6.72 |
1 | Wang Z Q, Xu Z N, Peng S Y, et al. New catalysts for coal to ethylene glycol[J]. Chinese Journal of Chemistry, 2017, 35(6): 759-768. |
2 | Ye R P, Lin L, Wang L C, et al. Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate[J]. ACS Catalysis, 2020, 10(8): 4465-4490. |
3 | 徐京磐. 关注煤制乙二醇产业用新动能促上新台阶[J]. 中氮肥, 2020(2): 1-4. |
Xu J P. Focus on the coal to ethylene glycol industry and promote it to a new level with new kinetic energy[J]. M-Sized Nitrogenous Fertilizer Progress, 2020(2): 1-4. | |
4 | 王永胜. 影响合成气制乙二醇质量关键指标的因素及控制方法[J]. 化肥设计, 2019, 57(4): 28-30, 62. |
Wang Y S. Factors impacting the key quality indicators of syngas-to-EG and controlling measures[J]. Chemical Fertilizer Design, 2019, 57(4): 28-30, 62. | |
5 | 李学强, 郑化安, 张生军, 等. 国内煤制乙二醇现状及发展建议[J]. 洁净煤技术, 2014, 20(6): 92-96. |
Li X Q, Zheng H A, Zhang S J, et al. Development suggestions for coal to ethylene glycol in domestic[J]. Clean Coal Technology, 2014, 20(6): 92-96. | |
6 | 王庆新. 合成气制乙二醇反应器大型化措施[J]. 中氮肥, 2017(4): 1-6. |
Wang Q X. Maximization measures of EG reactor by syngas [J]. M-Sized Nitrogenous Fertilizer Progress, 2017(4): 1-6. | |
7 | 毛彦鹏, 张博, 骆念军, 等. 一种用于CO羰化偶联合成草酸二甲酯的轴径向反应器: 109395667A[P]. 2019-03-01. |
Mao Y P, Zhang B, Luo N J, et al. An axial radial reactor for CO carbonylation coupling to dimethyl oxalate: 109395667A[P]. 2019-03-01. | |
8 | 陈伟建, 王强, 钱胜涛, 等. 一种用于合成气制乙二醇工艺的新型羰化反应器: 204911449U[P]. 2015-12-30. |
Chen W J, Wang Q, Qian S T, et al. A novel carbonylation reactor for ethylene glycol production from syngas: 204911449U[P]. 2015-12-30. | |
9 | 安嘉元, 李瑞江, 朱学栋, 等. 合成气制乙二醇羰化径向反应器床层换热模拟[J]. 化学工程, 2020, 48(8): 57-62. |
An J Y, Li R J, Zhu X D, et al. Simulation of bed heat transfer in radial carbonylation reactor for syngas to ethylene glycol[J]. Chemical Engineering (China), 2020, 48(8): 57-62. | |
10 | 鲁文质. SDMO路线合成乙二醇的模拟研究[D]. 上海: 上海交通大学, 2006. |
Lu W Z. Simulation on ethylene glycol synthesis by super DMO-based technology[D]. Shanghai: Shanghai JiaoTong University, 2006. | |
11 | 谭俊青. CO催化偶联合成草酸二甲酯的机理及动力学研究[D]. 上海: 华东理工大学, 2008. |
Tan J Q. IR study and kinetic research on CO catalytic coupling to dimethyl oxalate[D]. Shanghai: East China University of Science and Technology, 2008. | |
12 | 徐艳, 马新宾, 刘戈, 等. CO偶联制草酸酯合成反应器的动态特性[J].石油化工, 2001,30: 764-767. |
Xu Y, Ma X B, Liu G, et al. Dynamic characteristics of a reactor for CO coupling to oxalate[J]. Petrochemical Technology, 2001,30: 764-767. | |
13 | 徐艳, 马新宾, 许根慧. 草酸二乙酯合成反应器参数敏感性研究[J].石油化工, 2003,32: 835-837. |
Xu Y, Ma X B, Xu H G. Study on parameter sensitivity of diethyl oxalate synthesis reactor[J]. Petrochemical Technology, 2003,32: 835-837. | |
14 | Zhu Y P, Tu S, Luo Z H. Modeling for the catalytic coupling reaction of carbon monoxide to diethyl oxalate in fixed-bed reactors: reactor model and its applications[J]. Chemical Engineering Research and Design, 2012, 90(9): 1361-1371. |
15 | Gao X, Zhu Y P, Luo Z H. CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors[J]. Chemical Engineering Science, 2011, 66(23): 6028-6038. |
16 | 王玮涵, 李振花, 王保伟, 等. 钯催化剂上CO气相催化偶联合成草酸酯的研究[C]//中国工程院化工、冶金与材料工程学部第七届学术会议. 北京: 2010. |
Wang W H, Li Z H, Wang B W, et al. Study on gas phase coupling of CO to oxalate over palladium catalyst[C]// Proceedings of the 7th Academic Conference of the Ministry of Chemical, Metallurgical and Materials Engineering, Chinese Academy of Engineering. Beijing: 2010. | |
17 | Uchiumi S I, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system[J]. Journal of Organometallic Chemistry, 1999, 576(1/2): 279-289. |
18 | 张铁, 王建新, 姜杰. 亚硝酸甲酯物性研究[J]. 安全、健康和环境, 2013, 13(7): 39-40, 56. |
Zhang T, Wang J X, Jiang J. Study on physical nature of methyl nitrite[J]. Safety Health & Environment, 2013, 13(7): 39-40, 56. | |
19 | 毛文发. CO偶联制草酸二甲酯反应动力学及反应器建模[D]. 上海: 华东理工大学, 2021. |
Mao W F. Kinetic study and reactor modeling of CO coupling to dimethyl oxalate[D]. Shanghai: East China University of Science and Technology, 2021. | |
20 | 鲁文质, 滕立华, 肖文德. 固定床反应器合成二甲醚的模拟分析[J]. 天然气化工, 2002, 27(4): 53-61. |
Lu W Z, Teng L H, Xiao W D. Simulation analysis of fixed-bed reactor for dimethyl ether synthesis[J]. Natural Gas Chemical Industry, 2002, 27(4): 53-61. | |
21 | Li C H, Finlayson B A. Heat transfer in packed beds—a reevaluation[J]. Chemical Engineering Science, 1977, 32(9): 1055-1066. |
22 | Rase H F. Fixed-bed Reactor Design and Diagnostics[M]. Boston: Butterworths, 1990. |
23 | Fahien R W, Smith J M. Mass transfer in packed beds[J]. AIChE Journal, 1955, 1(1): 28-37. |
24 | Roemer G, Dranoff J S, Smith J M. Diffusion in packed beds at low flow rates[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(4): 284-287. |
25 | Tsotsas E, Schlünder E U. Some remarks on channelling and on radial dispersion in packed beds[J]. Chemical Engineering Science, 1988, 43(5): 1200-1203. |
26 | Benneker A H, Kronberg A E, Post J W, et al. Axial dispersion in gases flowing through a packed bed at elevated pressures[J]. Chemical Engineering Science, 1996, 51(10): 2099-2108. |
27 | 陈甘棠. 化学反应工程[M]. 3版. 北京: 化学工业出版社, 2007. |
Chen G T. Chemical Reaction Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2007. | |
28 | Ergun S. Fluid flow through packed column[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94. |
29 | Ried R C, Prausnitz J M, Sherwood J K. The Properties of Gas and Liquid[M]. 4th ed. New York: Mcgraw-Hill Companies, 1987. |
30 | 尹平. 一氧化碳偶联制草酸二甲酯及碳酸二甲酯体系的热力学分析[J]. 天然气化工(C1化学与化工), 1987, 12(4): 6-12. |
Yin P. Thermodynamic analysis of dimethyl oxalate and dimethyl carbonate prepared by carbon monoxide coupling [J]. Natural Gas Chemical Industry(C1 Chemistry and Technology), 1987, 12(4): 6-12. | |
31 | 时钧. 化学工程手册[M]. 2版. 北京: 化学工业出版社, 1996. |
Shi J. Chemical Engineering Handbook[M]. 2nd ed. Beijing: Chemical Industry Press, 1996. | |
32 | Li Y X. A comparative study on heat transfer performance of typical petrochemical reactors[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(4): 61-70. |
33 | 苏传好. 乙二醇生产过程中CO偶联生产草酸二甲酯工艺优化[J]. 云南化工, 2017, 44(7): 36-39. |
Su C H. Process optimization of CO coupling production of dimethyl oxalate in the process of ethylene glycol production[J]. Yunnan Chemical Technology, 2017, 44(7): 36-39. | |
34 | 计扬. CO催化偶联制草酸二甲酯反应机理、催化剂和动力学的研究[D]. 上海: 华东理工大学, 2010. |
Ji Y. Study of catalyst, mechanism, and intrinsic kinetics of CO catalytic coupling to dimethyl oxalate (DMO)[D]. Shanghai: East China University of Science and Technology, 2010. |
[1] | 迟子怡, 刘成伟, 张欲凌, 李学刚, 肖文德. CO氧化偶联反应器模拟与优化[J]. 化工学报, 2022, 73(11): 4974-4986. |
[2] | 董桂霖, 罗祖伟, 曹约强, 周静红, 李伟, 周兴贵. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240. |
[3] | 李英, 李浙齐, 张香平. 耦合传质的羰基化固定床反应器传热模拟分析[J]. 化工学报, 2021, 72(3): 1627-1633. |
[4] | 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471. |
[5] | 武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931. |
[6] | 王登豪, 张传彩, 朱明远, 于锋, 代斌. 高效稳定的铜镍催化剂在草酸二甲酯加氢中的应用[J]. 化工学报, 2017, 68(7): 2739-2745. |
[7] | 杨遥, 葛世轶, 黄正梁, 孙婧元, 王靖岱, 廖祖维, 蒋斌波, 阳永荣. 工业级错流列管式固定床反应器的CFD模拟[J]. 化工学报, 2016, 67(7): 2692-2701. |
[8] | 杨磊,于宏兵,王胜强,周奇彬,王浩闻. CaO/FA吸收剂高温吸收CO2及穿透特性[J]. 化工学报, 2012, 63(2): 606-611. |
[9] | 王子良,李瑞军,解东来. 一种CO优先氧化装置的实验研究[J]. 化工进展, 2012, 31(03): 523-527. |
[10] | 陈国庆, 高继慧, 王帅, 付晓林, 徐莉莉, 秦裕琨. 烟气气相组分及Ca(OH)2对KMnO4氧化NO的影响机理 [J]. 化工学报, 2009, 60(9): 2314-2320. |
[11] | 汪璐, 王铁军, 张琦, 徐莹, 常杰. 两段式固定床反应器上生物油水相部分的重整制氢反应 [J]. 化工学报, 2009, 60(8): 2054-2060. |
[12] | 江佳佳, 蒋军成, 潘勇. 非绝热式固定床反应器的参数敏感性及热失控临界参数 [J]. 化工学报, 2009, 60(10): 2490-2496. |
[13] | 温守东,胡兴兰,巩金龙,马新宾. MoO3/γ-Al2O3催化剂中钼含量对草酸二甲酯与苯酚酯交换 反应催化活性的影响 [J]. CIESC Journal, 2008, 27(9): 1439-. |
[14] | 徐晓滢 姚忠 马哲 刘辉 周华 韦萍. 海因酶法耦合原位分离技术制备N-氨甲酰-D-苯丙氨酸 [J]. CIESC Journal, 2007, 58(4): 980-986. |
[15] | 张超群 姜秀民 黄庠永 刘建国. 煤焦吸附NO特性与红外光谱分析 [J]. CIESC Journal, 2007, 58(3): 581-586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||