化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1446-1456.DOI: 10.11949/0438-1157.20221550
肖忠良(), 尹碧露, 宋刘斌(), 匡尹杰, 赵亭亭, 刘成, 袁荣耀
收稿日期:
2022-11-30
修回日期:
2022-12-23
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
宋刘斌
作者简介:
肖忠良(1964—),男,博士,教授,xiaozhongliang@163.com
基金资助:
Zhongliang XIAO(), Bilu YIN, Liubin SONG(), Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN
Received:
2022-11-30
Revised:
2022-12-23
Online:
2023-04-05
Published:
2023-06-02
Contact:
Liubin SONG
摘要:
随着锂离子电池(LIBs)市场的快速增长,探索回收退役LIBs的有效策略已成为迫在眉睫的问题。未来,资源化回收将受到广泛关注。资源化回收既可以解决有价金属锂、镍、钴、锰资源短缺的问题,又可抑制废旧电池堆积而引起的危害,但运输、存储以及金属富集过程中的安全性问题仍得不到保障。针对退役电池回收工艺研究进展进行综述,重点对整个回收过程,包括运输存储、预处理、金属富集等步骤进行了全过程安全风险分析。通过对退役电池回收过程中的安全风险进行全面分析和梳理,旨在为国内外企业后续的电池回收方案提供参考。
中图分类号:
肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456.
Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis[J]. CIESC Journal, 2023, 74(4): 1446-1456.
图4 (a) 被搅拌器吸附的磁性材料的TEM图像;(b) 纳米复合颗粒的形成过程示意图[67]
Fig.4 (a) TEM image of the magnetic material adsorbed by the stirrer; (b) Schematic diagram of the formation process of nanocomposite particles[67]
浸出试剂 | 辅助试剂 | 阴极材料 | 操作条件 | 浸出率 /% | 优点 | 缺点 | |||
---|---|---|---|---|---|---|---|---|---|
Li | Ni | Co | Mn | ||||||
甲磺酸[ | H2O2 | LiCoO2 | 0.9%(体积分数) H2O2, 1 mol/L, 70℃, 1 h | 约100 | — | 约100 | — | 操作简单,成本低 | 腐蚀性,无选择性 |
甲磺酸+对甲苯磺酸[ | H2O2 | LiFePO4 | 4 mol/L甲磺酸, S/L 40 g/L,室温,90 min | 95 | — | — | — | 绿色,成本低 | 选择性低 |
硫酸钠[ | H2O2 | LiNi0.5Co0.2Mn0.3O2 | 电解, pH=6, 60℃, 2%(体积分数) H2O2 | >99 | — | >99 | — | 绿色,操作简单 | 高能耗 |
氨水-硫酸铵[ | 亚硫酸钠 | Li(Ni1/3Co1/3Mn1/3)O2 | 50℃,10~50 g/L 纸浆密度 | 97 | 95 | 89 | — | 操作简单,成本低, | 锰的选择 性低 |
硫酸[ | Na2S2O5 | Li(Mn, Ni, Co)O2 | >1.25 mol/L H2SO4, 0.1 mol/L Na2S2O5, S/L 100 g/L, 60℃, 2.5 h | 约90 | 约90 | 约90 | 约90 | 操作简单 | 腐蚀性强, 浸出液量大 |
硫酸[ | H2O2 | LiMn2O4 | 0.5 mol/L H2SO4, 2%(体积分数)H2O2, S/L 50 g/L, 80℃, 60 min | 99.62 | — | 98.13 | — | 操作简单 | 一定的腐蚀性, 高温 |
磷酸[ | 葡萄糖 | LiCoO2 | 1.5mol/L H3PO4,0.02 mol/L 葡萄糖,S/L 2 g/L, 80℃,2 h | 100 | — | 98 | — | 浸出液少,效率高 | 一定的腐蚀性, 高温 |
单宁酸[ | 醋酸 | 废弃的LIBs 阴极 | 1 mol/L 醋酸, 20 g/L 单宁酸, 80℃, 4 h | 99 | — | 94 | — | 浸出液少,效率高 | 一定的腐蚀性,高温 |
丙醇酸[ | H2O2 | LiNi1/3Mn1/3Co1/3O2 | 0.5% H2O2(体积分数), 1.5 mol/L 丙醇酸, S/L 20 g/L, 70℃, 20 min | 95 | >98 | >98 | >98 | 绿色,操作简单 | 一定的腐蚀性,高温 |
柠檬酸[ | H2O2 | 废弃的LIBs 阴极 | 2 mol/L 柠檬酸,2% H2O2(体积分数), 80℃, S/L 20 g/L, 90 min | 约100 | — | 约99 | — | 绿色,操作简单 | 无选择性, 高温 |
柠檬酸[ | 橘子皮 | LiCoO2 | 200 mg 橘子皮,1.5 mol/L 柠檬酸, 100℃, 4 h | 80.5 | 90.1 | 91.3 | 92.2 | 绿色, 成本低 | 高温 |
草酸盐[ | 柠檬酸 | LiNi0.5Co0.2Mn0.3O2 | 0.2 mol/L H3PO4, 0.4 mol/L 柠檬酸, pH=1.98 | 约100 | 约100 | 约100 | 约100 | 操作简单 | 一定的 腐蚀性 |
乳酸[ | H2O2 | LiNi1/3Mn1/3Co1/3O2 | 1.5 mol/ L 乳酸,2%(体积分数) H2O2, S/L 20 g/L, 70℃, 20 min | 97.7 | 98.2 | 98.9 | 98.4 | 高效, 无毒气 | 高温, 成本高 |
硫酸+ 丙醇酸[ | H2O2 | LiNi x Co y Mn z O2 | 0.93 mol/L H2SO4, 0.85 mol/L 丙酮酸, S/L 61 g/L, 70℃, 81 min | 99.8 | 99.5 | 97.2 | 96.9 | 操作简单,高效 | 一定的腐蚀性, 高温 |
柠檬酸+ DL-苹果酸[ | H2O2 | 废弃的LIBs 阴极 | 1 mol/L 柠檬酸, 2%(体积分数) H2O2, 95℃, 30 min | >96 | — | >98 | — | 操作简单,绿色 | 高温, 无选择性 |
酒石酸[ | 抗坏血酸 | LiCoO2 | 0.4 mol/L 酒石酸,80℃, 5 h, 0.02 mol/L 抗坏血酸,S/L 2 g/L | 99 | — | 96 | — | 高效, 无毒气 | 渗滤液量大,温度高 |
表1 不同浸出方法在废旧LIBs回收中的特性比较
Table 1 Comparison of the characteristics of different leaching methods in the recovery of used LIBs
浸出试剂 | 辅助试剂 | 阴极材料 | 操作条件 | 浸出率 /% | 优点 | 缺点 | |||
---|---|---|---|---|---|---|---|---|---|
Li | Ni | Co | Mn | ||||||
甲磺酸[ | H2O2 | LiCoO2 | 0.9%(体积分数) H2O2, 1 mol/L, 70℃, 1 h | 约100 | — | 约100 | — | 操作简单,成本低 | 腐蚀性,无选择性 |
甲磺酸+对甲苯磺酸[ | H2O2 | LiFePO4 | 4 mol/L甲磺酸, S/L 40 g/L,室温,90 min | 95 | — | — | — | 绿色,成本低 | 选择性低 |
硫酸钠[ | H2O2 | LiNi0.5Co0.2Mn0.3O2 | 电解, pH=6, 60℃, 2%(体积分数) H2O2 | >99 | — | >99 | — | 绿色,操作简单 | 高能耗 |
氨水-硫酸铵[ | 亚硫酸钠 | Li(Ni1/3Co1/3Mn1/3)O2 | 50℃,10~50 g/L 纸浆密度 | 97 | 95 | 89 | — | 操作简单,成本低, | 锰的选择 性低 |
硫酸[ | Na2S2O5 | Li(Mn, Ni, Co)O2 | >1.25 mol/L H2SO4, 0.1 mol/L Na2S2O5, S/L 100 g/L, 60℃, 2.5 h | 约90 | 约90 | 约90 | 约90 | 操作简单 | 腐蚀性强, 浸出液量大 |
硫酸[ | H2O2 | LiMn2O4 | 0.5 mol/L H2SO4, 2%(体积分数)H2O2, S/L 50 g/L, 80℃, 60 min | 99.62 | — | 98.13 | — | 操作简单 | 一定的腐蚀性, 高温 |
磷酸[ | 葡萄糖 | LiCoO2 | 1.5mol/L H3PO4,0.02 mol/L 葡萄糖,S/L 2 g/L, 80℃,2 h | 100 | — | 98 | — | 浸出液少,效率高 | 一定的腐蚀性, 高温 |
单宁酸[ | 醋酸 | 废弃的LIBs 阴极 | 1 mol/L 醋酸, 20 g/L 单宁酸, 80℃, 4 h | 99 | — | 94 | — | 浸出液少,效率高 | 一定的腐蚀性,高温 |
丙醇酸[ | H2O2 | LiNi1/3Mn1/3Co1/3O2 | 0.5% H2O2(体积分数), 1.5 mol/L 丙醇酸, S/L 20 g/L, 70℃, 20 min | 95 | >98 | >98 | >98 | 绿色,操作简单 | 一定的腐蚀性,高温 |
柠檬酸[ | H2O2 | 废弃的LIBs 阴极 | 2 mol/L 柠檬酸,2% H2O2(体积分数), 80℃, S/L 20 g/L, 90 min | 约100 | — | 约99 | — | 绿色,操作简单 | 无选择性, 高温 |
柠檬酸[ | 橘子皮 | LiCoO2 | 200 mg 橘子皮,1.5 mol/L 柠檬酸, 100℃, 4 h | 80.5 | 90.1 | 91.3 | 92.2 | 绿色, 成本低 | 高温 |
草酸盐[ | 柠檬酸 | LiNi0.5Co0.2Mn0.3O2 | 0.2 mol/L H3PO4, 0.4 mol/L 柠檬酸, pH=1.98 | 约100 | 约100 | 约100 | 约100 | 操作简单 | 一定的 腐蚀性 |
乳酸[ | H2O2 | LiNi1/3Mn1/3Co1/3O2 | 1.5 mol/ L 乳酸,2%(体积分数) H2O2, S/L 20 g/L, 70℃, 20 min | 97.7 | 98.2 | 98.9 | 98.4 | 高效, 无毒气 | 高温, 成本高 |
硫酸+ 丙醇酸[ | H2O2 | LiNi x Co y Mn z O2 | 0.93 mol/L H2SO4, 0.85 mol/L 丙酮酸, S/L 61 g/L, 70℃, 81 min | 99.8 | 99.5 | 97.2 | 96.9 | 操作简单,高效 | 一定的腐蚀性, 高温 |
柠檬酸+ DL-苹果酸[ | H2O2 | 废弃的LIBs 阴极 | 1 mol/L 柠檬酸, 2%(体积分数) H2O2, 95℃, 30 min | >96 | — | >98 | — | 操作简单,绿色 | 高温, 无选择性 |
酒石酸[ | 抗坏血酸 | LiCoO2 | 0.4 mol/L 酒石酸,80℃, 5 h, 0.02 mol/L 抗坏血酸,S/L 2 g/L | 99 | — | 96 | — | 高效, 无毒气 | 渗滤液量大,温度高 |
方法 | 优点 | 缺点 |
---|---|---|
火法冶金 | 不产生废水;与湿法冶金相比,加工步骤更少;合金直接被熔化为所需回收金属 | 耗能高;有害气体排放;回收过程中的损失大 |
湿法冶金 | 高可持续性;高提取效率;能源消耗低; 危险气体排放少;成本低 | 操作步骤复杂;产生大量的酸性废物;有害气体排放如Cl2、SO3、NO x; 处理有害气体、酸性浸出物和酸性废水的额外费用高 |
生物湿法冶金 (生物沥滤) | 操作成本低;化学品的使用量最小; 在低金属浓度下效率高;无毒 | 动力学缓慢,处理时间长;电解质和黏合剂的毒性对微生物活性产生影响;在高纸浆密度下,效率较低;无法改变金属价态 |
表2 废旧LIBs的各种金属回收工艺的比较
Table 2 Comparison of various metal recovery processes for waste LIBs
方法 | 优点 | 缺点 |
---|---|---|
火法冶金 | 不产生废水;与湿法冶金相比,加工步骤更少;合金直接被熔化为所需回收金属 | 耗能高;有害气体排放;回收过程中的损失大 |
湿法冶金 | 高可持续性;高提取效率;能源消耗低; 危险气体排放少;成本低 | 操作步骤复杂;产生大量的酸性废物;有害气体排放如Cl2、SO3、NO x; 处理有害气体、酸性浸出物和酸性废水的额外费用高 |
生物湿法冶金 (生物沥滤) | 操作成本低;化学品的使用量最小; 在低金属浓度下效率高;无毒 | 动力学缓慢,处理时间长;电解质和黏合剂的毒性对微生物活性产生影响;在高纸浆密度下,效率较低;无法改变金属价态 |
1 | Xiao X Y, Liu Y, Jin J X, et al. HTS applied to power system: benefits and potential analysis for energy conservation and emission reduction[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-9. |
2 | Cheng D X, Wu L F. A summary of research on energy saving and emission reduction of transportation[J]. IOP Conference Series: Earth and Environmental Science, 2017, 100: 012212. |
3 | Richardson M T. Prospects for detecting accelerated global warming[J]. Geophysical Research Letters, 2022, 49(2):e2021 GL095782. |
4 | 陈爱萍. 全球双碳政策对中国的启示[J]. 生态文明世界, 2022(4): 42-49. |
Chen A P. What global commitments to carbon neutrality and carbon peaking goals inspire China? [J]. Ecological Civilization World, 2022(4): 42-49. | |
5 | Xu F F, Zhang S G. Automobile newborn—new energy vehicle[J]. Journal of Physics: Conference Series, 2019, 1303(1): 012056. |
6 | Zhang H, Cai G X. Subsidy strategy on new-energy vehicle based on incomplete information: a case in China[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 541: 123370. |
7 | Ren J Z. New energy vehicle in China for sustainable development: analysis of success factors and strategic implications[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 268-288. |
8 | 杨生龙, 母庆闯, 张志华, 等. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2022, 41(2):19-26. |
Yang S L, Mu Q C, Zhang Z H, et al. Advances in recycling technology for waste lithium-ion batteries[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 41(2):19-26. | |
9 | Ma S, Jiang M D, Tao P, et al. Temperature effect and thermal impact in lithium-ion batteries: a review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. |
10 | Huang B, Pan Z F, Su X Y, et al. Recycling of lithium-ion batteries: recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
11 | Miao Y, Hynan P, Jouanne V A, et al. Current Li-ion battery technologies in electric vehicles and opportunities for advancements[J]. Energies, 2019, 12(6): 1074. |
12 | Zhang X X, Li L, Fan E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
13 | Zhou L F, Yang D R, Du T, et al. The current process for the recycling of spent lithium ion batteries[J]. Frontiers in Chemistry, 2020, 8: 578044. |
14 | Nayl A A, Elkhashab R A, Badawy S M, et al. Acid leaching of mixed spent Li-ion batteries[J]. Arabian Journal of Chemistry, 2017, 10: S3632-S3639. |
15 | Wang J J, Yue X Y, Wang P F, et al. Electrochemical technologies for lithium recovery from liquid resources: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111813. |
16 | Moazzam P, Boroumand Y, Rabiei P, et al. Lithium bioleaching: an emerging approach for the recovery of Li from spent lithium ion batteries[J]. Chemosphere, 2021, 277: 130196. |
17 | Mauler L, Duffner F, Zeier W G, et al. Battery cost forecasting: a review of methods and results with an outlook to 2050[J]. Energy & Environmental Science, 2021, 14(9): 4712-4739. |
18 | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
Zhou Y W, Chen Z, Xu J H. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96. | |
19 | Rajaeifar M A, Raugei M, Steubing B, et al. Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies[J]. Journal of Industrial Ecology, 2021, 25(6): 1560-1571. |
20 | Sethurajan M, Gaydardzhiev S. Bioprocessing of spent lithium ion batteries for critical metals recovery—a review[J]. Resources, Conservation and Recycling, 2021, 165: 105225. |
21 | Zhao S L, Ma C H. Research on the coordination of the power battery echelon utilization supply chain considering recycling outsourcing[J]. Journal of Cleaner Production, 2022, 358: 131922. |
22 | Duan X W, Zhu W K, Ruan Z K, et al. Recycling of lithium batteries—a review[J]. Energies, 2022, 15(5): 1611. |
23 | 雷蕾, 李维, 李红宇, 等. 废旧锂离子动力电池回收技术及安全风险分析[J]. 科学技术创新, 2020(25): 189-190. |
Lei L, Li W, Li H Y, et al. Recycling technology and safety risk analysis of waste lithium-ion power battery[J]. Scientific and Technological Innovation, 2020(25): 189-190. | |
24 | BenSaleh M S, Saida R, Kacem Y H, et al. Wireless sensor network design methodologies: a survey[J]. Journal of Sensors, 2020, 2020: 9592836. |
25 | 孙仲振. 锂离子电池MES系统的应用开发[J]. 现代工业经济和信息化, 2021, 11(3): 36-39. |
Sun Z Z. Application and development of lithium ion battery MES system[J]. Modern Industrial Economy and Informationization, 2021, 11(3): 36-39. | |
26 | 孙蕊刚, 赵首花, 张赏雪, 等. 区块链技术在网络安全等级保护区域的应用[J].网络安全技术与应用, 2021(9): 15-16. |
Sun R G, Zhao S H, Zhang S X, et al. Application of blockchain technology in network security level protection area[J]. Network Security Technology & Application, 2021(9): 15-16. | |
27 | Sadeghi K, Kim J, Seo J. Packaging 4.0: the threshold of an intelligent approach[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(3): 2615-2638. |
28 | Wang Y W, Shu C M. Energy generation mechanisms for a Li-ion cell in case of thermal explosion: a review[J]. Journal of Energy Storage, 2022, 55: 105501. |
29 | Peng J, Jia S H, Yu H Q, et al. Design and experiment of FBG sensors for temperature monitoring on external electrode of lithium-ion batteries[J]. IEEE Sensors Journal, 2021, 21(4): 4628-4634. |
30 | Wang L M, Lu D, Song M C, et al. Instantaneous estimation of internal temperature in lithium-ion battery by impedance measurement[J]. International Journal of Energy Research, 2020, 44(4): 3082-3097. |
31 | Grandjean T, Barai A, Hosseinzadeh E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225. |
32 | Raijmakers L H J, Danilov D L, Eichel R A, et al. A review on various temperature-indication methods for Li-ion batteries[J]. Applied Energy, 2019, 240: 918-945. |
33 | Lee C Y, Lee S J, Hung Y M, et al. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery[J]. Sensors and Actuators A: Physical, 2017, 253: 59-68. |
34 | Yang L, Li N, Hu L K, et al. Internal field study of 21700 battery based on long-life embedded wireless temperature sensor[J]. Acta Mechanica Sinica, 2021, 37(6): 895-901. |
35 | Zhang J L, Liang G Q, Yang C, et al. A breakthrough method for the recycling of spent lithium-ion batteries without pre-sorting[J]. Green Chemistry, 2021, 23(21): 8434-8440. |
36 | Zeng X L, Li J H, Singh N. Recycling of spent lithium-ion battery: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. |
37 | Wu L, Zhang F S, He K, et al. Avoiding thermal runaway during spent lithium-ion battery recycling: a comprehensive assessment and a new approach for battery discharge[J]. Journal of Cleaner Production, 2022, 380(82): 135045. |
38 | Ojanen S, Lundström M, Santasalo A A, et al. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling[J]. Waste Management, 2018, 76: 242-249. |
39 | Wang H Y, Li Z F, Meng Q, et al. Ammonia leaching of valuable metals from spent lithium ion batteries in NH3-(NH4)2SO4-Na2SO3 system[J]. Hydrometallurgy, 2022, 208: 105809. |
40 | Tan T, Lee P K, Zettsu N, et al. Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries[J]. Electrochimica Acta, 2022, 404: 139777. |
41 | Zheng F, Duan Q L, Peng Q K, et al. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling[J]. Journal of Cleaner Production, 2022, 359: 132116. |
42 | Marshall J, Gastol D, Sommerville R, et al. Disassembly of Li ion cells-characterization and safety considerations of a recycling scheme[J]. Metals, 2020, 10(6): 773. |
43 | Li L R, Zheng P N, Yang T R, et al. Disassembly automation for recycling end-of-life lithium-ion pouch cells[J]. JOM, 2019, 71(12): 4457-4464. |
44 | 张悦, 何丽杰, 张守庆, 等. 废旧锂离子电池的回收技术现状及展望[J]. 电源技术, 2018, 42(8): 1230-1232. |
Zhang Y, He L J, Zhang S Q, et al. Current situation and prospect of lithium ion battery recycling technology[J]. Chinese Journal of Power Sources, 2018, 42(8): 1230-1232. | |
45 | Sommerville R, Shaw S J, Goodship V, et al. A review of physical processes used in the safe recycling of lithium ion batteries[J]. Sustainable Materials and Technologies, 2020, 25: e00197. |
46 | Lu Y Q, Maftouni M, Yang T R, et al. A novel disassembly process of end-of-life lithium-ion batteries enhanced by online sensing and machine learning techniques[J]. Journal of Intelligent Manufacturing, 2023, 34: 2463-2475. |
47 | Zhou L, Garg A, Zheng J, et al. Battery pack recycling challenges for the year 2030: recommended solutions based on intelligent robotics for safe and efficient disassembly, residual energy detection and secondary utilization[J]. Energy Storage, 2020, 3(3): e190. |
48 | 张群斌, 董陶, 李晶晶, 等. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9): 2798-2810. |
Zhang Q B, Dong T, Li J J, et al. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. | |
49 | Vanderburgt S, Santos R M, Chiang Y W. Is it worthwhile to recover lithium-ion battery electrolyte during lithium-ion battery recycling?[J]. Resources, Conservation and Recycling, 2023, 189: 106733. |
50 | Liang Z L, Cai C, Peng G W, et al. Hydrometallurgical recovery of spent lithium ion batteries: environmental strategies and sustainability evaluation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5750-5767. |
51 | Tokumasu K, Harada M, Okada T. Freezing-facilitated dehydration allowing deposition of ZnO from aqueous electrolyte[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2017, 18(4): 329-333. |
52 | Lei S, Sun W, Yang Y, et al. Solvent extraction for recycling of spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2022, 424: 127654. |
53 | Nowak S, Winter M. The role of sub-and supercritical CO2 as processing solvent for the recycling and sample preparation of lithium ion battery electrolytes[J]. Molecules, 2017, 22(3): 403. |
54 | Zhang R H, Shi X Y, Esan O C, et al. Organic electrolytes recycling from spent lithium-ion batteries[J]. Global Challenges, 2022, 6(12): 2200050. |
55 | Zhang J Y, Yao X H, Misra R K, et al. Progress in electrolytes for beyond-lithium-ion batteries[J]. Journal of Materials Science & Technology, 2020, 44: 237-257. |
56 | Song L B, Zheng Y H, Xiao Z L, et al. Review on thermal runaway of lithium-ion batteries for electric vehicles[J]. Journal of Electronic Materials, 2022, 51(1): 30-46. |
57 | Du X W, Yang B, Lu Y, et al. Detection of electrolyte leakage from lithium-ion batteries using a miniaturized sensor based on functionalized double-walled carbon nanotubes[J]. Journal of Materials Chemistry C, 2021, 9(21): 6760-6765. |
58 | Jin S, Mu D, Lu Z, et al. A comprehensive review on the recycling of spent lithium-ion batteries: urgent status and technology advances[J]. Journal of Cleaner Production, 2022, 340: 130535. |
59 | Grützke M, Kraft V, Weber W, et al. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes[J]. The Journal of Supercritical Fluids, 2014, 94: 216-222. |
60 | Liu Y L, Mu D Y, Li R H, et al. Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(8): 4181-4187. |
61 | Guan J, Li Y G, Guo Y G, et al. Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 1026-1032. |
62 | 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69 (1): 327-340. |
He L P, Sun S Y, Yu J G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340. | |
63 | Yun L, Linh D, Shui L, et al. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles[J]. Resources, Conservation and Recycling, 2018, 136: 198-208. |
64 | Lv W G, Wang Z H, Cao H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1504-1521. |
65 | Liu C W, Lin J, Cao H B, et al. Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review[J]. Journal of Cleaner Production, 2019, 228: 801-813. |
66 | Holzer A, Windisch-Kern S, Ponak C, et al. A novel pyrometallurgical recycling process for lithium-ion batteries and its application to the recycling of LCO and LFP[J]. Metals, 2021, 11(1): 149. |
67 | Huang K, Xiong H, Dong H L, et al. Carbon thermal reduction of waste ternary cathode materials and wet magnetic separation based on Ni/MnO nanocomposite particles[J]. Process Safety and Environmental Protection, 2022, 165: 278-285. |
68 | 李棉, 程琍琍, 杨幼明, 等. 锂离子电池回收利用技术研究进展[J]. 稀有金属, 2022, 46(3): 349-366. |
Li M, Cheng L L, Yang Y M, et al. Development of technology for spent lithium-ion batteries recycling: a review[J]. Chinese Journal of Rare Metals, 2022, 46(3): 349-366. | |
69 | Asadi D E, Karimi G R, Zandvakili S, et al. A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(7): 451-472. |
70 | Wang B, Lin X Y, Tang Y, et al. Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials[J]. Journal of Power Sources, 2019, 436: 226828. |
71 | Yadav P, Jie C J, Tan S, et al. Recycling of cathode from spent lithium iron phosphate batteries[J]. Journal of Hazardous Materials, 2020, 399: 123068. |
72 | Fang J H, Ding Z P, Ling Y, et al. Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent lithium-ion batteries assisted by sodium sulfate electrolysis[J]. Chemical Engineering Journal, 2022, 440: 135880. |
73 | Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling—reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. |
74 | Vieceli N, Nogueira C A, Guimarães C, et al. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite[J]. Waste Management, 2018, 71: 350-361. |
75 | Chang C, Sun K, Liu Y, et al. Regeneration of graphite and manganese carbonate from spent lithium-ion batteries for electric vehicles[J]. Ionics, 2022, 28 (5): 2239-2246. |
76 | Meng Q, Zhang Y J, Dong P, et al. Use of glucose as reductant to recover Co from spent lithium ions batteries[J]. Waste Management, 2017, 64: 214-218. |
77 | Prasetyo E, Muryanta W A, Anggraini A G, et al. Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2022, 24(3): 927-938. |
78 | Fan E S, Yang J B, Huang Y X, et al. Leaching mechanisms of recycling valuable metals from spent lithium-ion batteries by a malonic acid-based leaching system[J]. ACS Applied Energy Materials, 2020, 3(9): 8532-8542. |
79 | Santana I L, Moreira T F M, Lelis M F F, et al. Photocatalytic properties of Co3O4 /LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent[J]. Materials Chemistry and Physics, 2017, 190: 38-44. |
80 | Wu Z R, Soh T, Chan J J, et al. Repurposing of fruit peel waste as a green reductant for recycling of spent lithium-ion batteries[J]. Environmental Science & Technology, 2020, 54(15): 9681-9692. |
81 | Gao R, Sun C, Xu L, et al. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation[J]. Vacuum, 2020, 173: 109181. |
82 | Li L, Fan E S, Guan Y B, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
83 | Li P W, Luo S H, Su F X, et al. Optimization of synergistic leaching of valuable metals from spent lithium-ion batteries by the sulfuric acid-malonic acid system using response surface methodology[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11359-11374. |
84 | Musariri B, Akdogan G, Dorfling C, et al. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries[J]. Minerals Engineering, 2019, 137: 108-117. |
85 | Nayaka G P, Pai K V, Santhosh G, et al. Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co[J]. Hydrometallurgy, 2016, 161: 54-57. |
86 | Roy J J, Cao B, Madhavi S, et al. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach[J]. Chemosphere, 2021, 282: 130944. |
87 | Charef S A, Affoune A M, Caballero A, et al. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: a comparative study[J]. Waste Management, 2017, 68: 518-526. |
88 | Xiao J F, Li J, Xu Z M. Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy[J]. Environmental Science & Technology, 2017, 51(20): 11960-11966. |
89 | Xiao J F, Li J, Xu Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338: 124-131. |
90 | Ma Y Y, Zhou X, Tang J, et al. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2021, 417: 126032. |
91 | Hong J, Silva R A, Park J, et al. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic[J]. Journal of Bioscience and Bioengineering, 2016, 121(5): 536-542. |
92 | Bahaloo-Horeh N, Mousavi S M, Baniasadi M. Use of adapted metal tolerant aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries[J]. Journal of Cleaner Production, 2018, 197: 1546-1557. |
93 | Do M P, Roy J J, Cao B, et al. Green closed-loop cathode regeneration from spent NMC-based lithium-ion batteries through bioleaching[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8): 2634-2644. |
94 | Ouyang D, Chen M, Huang Q, et al. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures[J]. Applied Science, 2019, 9 (12): 2483. |
95 | Zhu X, Zhenpo W, Hsin W, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91. |
96 | 周永言, 唐念, 李丽, 等. 高压变电站事故预警监测探讨-新型氟化氢气体在线监测仪的研制[J]. 分析测试技术与仪器, 2013, 19 (4): 252-255. |
Zhou Y Y, Tang N, Li L, et al. Early warning and monitoring of high voltage substation accidents and development of new hydrogen fluoride gas on-line monitoring instrument[J]. Analysis and Testing Technology and Instruments, 2013, 19(4): 252-255. | |
97 | Weber I C, Rüedi P, Šot P, et al. Handheld device for selective benzene sensing over toluene and xylene[J]. Advanced Science, 2022, 9(4): e2103853. |
98 | Roberts T J, Lurton T, Giudice G, et al. Validation of a novel multi-gas sensor for volcanic HCl alongside H2S and SO2 at Mt[J]. Bulletin of Volcanology, 2017, 79(5): 36. |
99 | Zhang W, Chang J F, Xiao F J, et al. Design and analysis of a persistent, efficient, and self-contained WSN data collection system[J]. IEEE Access, 2018, 7: 1068-1083. |
100 | 宋刘斌, 李新海, 王志兴, 等. 锂离子电池充放电过程中的热行为及有限元模拟研究[J]. 功能材料, 2013, 44(8): 1153-1158. |
Song L B, Li X H, Wang Z X, et al. Finite element analysis and thermal behavior of lithium-ion cells during charge-discharge process[J]. Journal of Functional Materials, 2013, 44(8): 1153-1158. | |
101 | 肖忠良, 刘丹, 湛雪辉. 不同电解工艺条件对铝电解槽温度场分布影响的计算机模拟[J]. 矿冶工程, 2009, 29(2): 66-69. |
Xiao Z L, Liu D, Zhan X H. The computer simulation of effect of different electrolysis conditions on temperature field of aluminum reduction cell[J]. Mining and Metallurgical Engineering, 2009, 29(2): 66-69. | |
102 | 宋刘斌, 黎安娴, 肖忠良, 等. 第一性原理在锂离子电池电极材料中的应用研究[J]. 化工学报, 2019, 70(6): 2051-2059. |
Song L B, Li A X, Xiao Z L, et al. Application research status of first-principles in lithium-ion battery electrode materials[J]. CIESC Journal, 2019, 70(6): 2051-2059. | |
103 | Song L B, Li X Y, Xiao Z L, et al. Effect of Zr doping and Li2O-2B2O3 layer on the structural electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material: experiments and first-principle calculations[J]. Ionics, 2019, 25(5): 2017-2026. |
[1] | 李 丽1,2,葛 静1,陈人杰1,2,吴 锋1,2. 废旧锂离子电池回收制备钴酸锂的研究进展 [J]. CIESC Journal, 2010, 29(4): 757-. |
[2] | 张卫新, 马世闯, 杨则恒, 周晨旭, 王强. 基于废旧锂离子电池正极材料LiMn2O4制备λ-MnO2催化剂 [J]. 化工学报, 2009, 60(5): 1181-1185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||