[1] |
Choi S U S, Eastman J A. Enhancing Thermal Conductivity of Fluids with Nanoparticles[M]. New York: ASME, 1995
|
[2] |
Keblinski P, Phillpot S, Choi S U S, Eastman J A. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat Mass Transfer, 2002, 45(4): 855-863
|
[3] |
Prasher R, Phelan P E, Bhattacharya P. Effect of aggregation kinetics on thermal conductivity of nanoscale colloidal solutions (nanofluid) [J]. Nano Letters, 2006, 6(7): 1529-1534
|
[4] |
Gao J W, Zheng R T, Ohtani H, Zhu D S, Chen G. Experimental investigation of heat conduction mechanisms in nanofluids clue on clustering[J]. Nano Letters, 2012, 9(12): 4128-4132
|
[5] |
Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T, Das S K. Model for heat conduction in nanofluids[J]. Physical Review Letters, 2004, 93(14): 144301
|
[6] |
Chen H S, Ding Y L, He Y R, Tan C Q. Rheological behaviour of ethylene glycol based titania nanofluids[J]. Chemical Physics Letters, 2007, 444(4): 333-337
|
[7] |
Chen H S, Ding Y L, Lapkin A, Fan X L. Rheological behaviour of ethylene glycol-titanate nanotube nanofluids[J]. Journal of Nanoparticle Research, 2009, 11(6): 1513-1520
|
[8] |
Hong K S, Hong T K, Yang H S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles[J]. Applied Physics Letters, 2006, 88(3): 031901
|
[9] |
Nan C W, Shi Z, Lin Y. A simple model for thermal conductivity of carbon nanotube-based composites[J]. Chemical Physics Letters, 2003, 375(5): 666-669
|
[10] |
Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids[J]. Applied Physics Letters, 2006, 89(14): 143119
|
[11] |
Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170
|
[12] |
Wang X W, Xu X F, Choi S U S. Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 474-480
|
[13] |
Tseng W J, Wu C H. Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions[J]. Acta Materialia, 2002, 50(15): 3757-3766
|
[14] |
Tseng W J, Lin K C. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions[J]. Materials Science and Engineering: A, 2003, 355(1): 186-192
|
[15] |
Teipel U, Frter-Barth U. Rheology of nano-scale aluminum suspensions[J]. Propellants, Explosives, Pyrotechnics, 2001, 26(6): 268-272
|
[16] |
Tseng W J, Chen C N. Effect of polymeric dispersant on rheological behavior of nickel-terpineol suspensions[J]. Materials Science and Engineering: A, 2003, 347(1): 145-153
|
[17] |
Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol[J]. Korea-Australia Rheology Journal, 2005, 17(2): 35-40
|
[18] |
Liu M S, Lin M C C, Huang I T, Wang C C. Enhancement of thermal conductivity with CuO for nanofluids[J]. Chemical Engineering & Technology, 2006, 29(1): 72-79
|
[19] |
Tseng W J, Tzeng F. Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276(1): 34-39
|
[20] |
Kang H U, Kim S H, Oh J M. Estimation of thermal conductivity of nanofluid using experimental effective particle volume[J]. Experimental Heat Transfer, 2006, 19(3): 181-191
|
[21] |
Chang H, Jwo C S, Lo C H, Tsung T T, Kao M J, Lin H M. Rheology of CuO nanoparticle suspension prepared by ASNSS[J]. Review on Advanced Materials Science, 2005, 10(2): 128-132
|
[22] |
Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications[J]. Applied Physics Letters, 2006, 89(13): 133108
|
[23] |
Nguyen C T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Mintsa H. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1492-1506
|
[24] |
Namburu P K, Kulkarni D P, Misra D, Das D K. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture[J]. Experimental Thermal and Fluid Science, 2007, 32 (2): 397-402
|
[25] |
Xie H Q, Gu H, Fujii M, Zhang X. Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials[J]. Measurement Science and Technology, 2006, 17(1): 208-214
|
[26] |
Zheng R T, Gao J W, Wang J J, Feng S P, Ohtani H, Wang J B, Chen G. Thermal percolation in stable graphite suspensions[J]. Nano Letters, 2011, 12(1): 188-192
|
[27] |
Wang J J, Zheng R T, Gao J W, Chen G. Heat conduction mechanisms in nanofluids and suspensions[J].Nano Today, 2012, 7 (2): 124-136
|
[28] |
Zheng R T, Gao J W, Wang J J, Chen G. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions[J]. Nature Communications, 2011 (2):289
|