[1] |
Yang J C, Li F C, Zhou W W, He Y R, Jiang B C. Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids[J]. International Journal of Heat and Mass Transfer, 2012(55): 3160-3166
|
[2] |
Li F C, Yang J C, Zhou W W, He Y R, Huang Y M, Jiang B C. Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes[J]. Thermochimica Acta, 2013, 556: 47-53
|
[3] |
Yang J C, Li F C, He Y R, Huang Y M, Jiang B C. Experimental study on the characteristics of heat transfer and flow resistance in turbulent pipe flows of viscoelastic-fluid-based Cu nanofluid[J]. International Journal of Heat and Mass Transfer, 2013, 62: 303-313
|
[4] |
Yang J C, Li F C, Xu H P, He Y R, Huang Y M, Jiang B C. Heat transfer performance of viscoelastic-fluid-based nanofluid pipe flow at entrance region[J]. Experimental Heat Transfer, 2013.DOI:10.1080/08916152.2013.821545
|
[5] |
Ferry J D. Viscoelastic Properties of Polymers[M]. New York: Wiley, 1980
|
[6] |
Li F C, Yu B, Wei J J, Kawaguchi Y. Turbulent Drag Reduction by Surfactant Additives[M]. Beijing: Higher Eeducation Press, 2011
|
[7] |
Cates M E. Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions[J]. Macromolecules, 1987, 20(9): 2289-2296
|
[8] |
White A. Flow characteristics of complex soap system[J]. Nature, 1967(214): 323-330
|
[9] |
Qi Y Y, Zakin J L. Chemical and rheological characterization of drag-reducing cationic surfactant systems[J]. Industrial and Engineering Chemistry Research, 2002, 41: 6326-6336
|
[10] |
Kawaguchi Y, Yu B, Feng Z. Rheological characteristics and turbulent friction drag and heat transfer reductions of a very dilute cationic surfactant solution[J]. Journal of Heat Transfer, 2006, 128: 977-983
|
[11] |
Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility[J]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1): 69-109
|
[12] |
Nettesheim F, Liberatore M W, Hodgdon T K, Wagner N J, Kaler E W, Vethamuthu M. Influence of nanoparticle addition on the properties of wormlike micellar solutions[J]. Langmuir, 2008, 24(15): 7718-7726
|
[13] |
Gebhard Schramm. A Practical Approach to Rheology and Rheometry (实用流变测量学: 修订版)[M]. Zhu Huaijiang(朱怀江), trans. Beijing: Petroleum Industry Press, 2009: 45
|
[14] |
Yang Juancheng(阳倦成). Study on the turbulent flow and heat transfer characteristics of viscoelasitic fluid based nanofluid[D]. Harbin: Harbin Institute of Technology, 2013: 56-58
|
[15] |
Xuan Y, Li Q. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 58-64
|
[16] |
Li Q, Xuan Y, Wang J. Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer, 2003, 125: 151-155
|
[17] |
Wei J J, Kawaguchi Y, Yu B, et al. Rheological Characteristics and turbulent friction drag and heat transfer reductions of a very dilute cationic surfactant solution[J]. Journal of Fluids Engineering, 2006, 128: 977-983
|
[18] |
Bjrck . Least squares methods[J]. Handbook of Numerical Analysis, 1990, 1: 465-652.3
|
[19] |
Yu B, Kawaguchi Y. Direct numerical simulation of the viscoelastic drag-reducing flow: a faithful finite-difference method[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 116: 431-466
|
[20] |
Yu B, Kawaguchi Y. DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow[J]. International Journal of Heat and Mass Transfer, 2005, 48: 4569-4578
|
[21] |
Yu Bo(宇波),Wang Yi(王艺),Hou Lei(侯磊),Zhang Jinjun(张劲军). Direct numerical simulation on the drag-reducing flow by surfactant additives at various rheological properties[J]. Journal of Engineering Thermophysics(工程热物理学报), 2007, 28(3): 469-471
|