[1] |
CORMA A, MARTINEZ A. Chemistry, catalysts, and processes for isoparaffin-olefin alkylation:actual situation and future trends[J]. Catalysis Reviews-Science and Engineering, 1993, 35(4):483-570.
|
[2] |
HOMMELTOFT S I. Isobutane alkylation:recent developments and future perspectives[J]. Applied Catalysis A:General, 2001, 221(1/2):421-428.
|
[3] |
BUSCA G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chemical Reviews, 2007, 107(11):5366-5410.
|
[4] |
SIEVERS C, LIEBERT J S, STRATMANN M M, et al. Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation[J]. Applied Catalysis A:General, 2008, 336(1/2):89-100.
|
[5] |
SARSANI V, SUBRAMANIAM B. Isobutane/butene alkylation on microporous and mesoporous solid acid catalysts:probing the pore transport effects with liquid and near critical reaction media[J]. Green Chemistry, 2009, 11(1):102-108.
|
[6] |
WELTON T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8):2071-2084.
|
[7] |
HAYES R, WARR G G, ATKIN R. Structure and nanostructure in ionic liquids[J]. Chemical Reviews, 2015, 115(13):6357-6426.
|
[8] |
TANG S, SCURTO A M, SUBRAMANIAM B. Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures[J]. Journal of Catalysis, 2009, 268(2):243-250.
|
[9] |
XING X, ZHAO G, CUI J, et al. Isobutane alkylation using acidic ionic liquid catalysts[J]. Catalysis Communications, 2012, 26:68-71.
|
[10] |
HUANG Q, ZHAO G, ZHANG S, et al. Improved catalytic lifetime of H2SO4 for isobutane alkylation with trace amount of ionic liquids buffer[J]. Industrial & Engineering Chemistry Research, 2015, 54(5):1464-1469.
|
[11] |
WANG A, ZHAO G, LIU F, et al. Anionic clusters enhanced catalytic performance of protic acid ionic liquids for isobutane alkylation[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8271-8280.
|
[12] |
ZHENG W, WANG H, XIE W, et al. Understanding interfacial behaviors of isobutane alkylation with C4 olefin catalyzed by sulfuric acid or ionic liquids[J]. AIChE Journal, 2018, 64(3):950-960.
|
[13] |
LIU Y, WANG L, LI R, et al. Reaction mechanism of ionic liquid catalyzed alkylation:alkylation of 2-butene with deuterated isobutene[J]. Journal of Molecular Catalysis A:Chemical, 2016, 421:29-36.
|
[14] |
ZHENG W, XIE W, SUN W, et al. Modeling of the interfacial behaviors for the isobutane alkylation with C4 olefin using ionic liquid as catalyst[J]. Chemical Engineering Science, 2017, 166:42-52.
|
[15] |
LI K, ECKERT R E, ALBRIGHT L F. Alkylation of isobutane with light olefins using sulfuric acid. Operating variables affecting both chemical and physical phenomena[J]. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(3):441-446.
|
[16] |
LI K, ECKERT R E, ALBRIGHT L F. Alkylation of isobutane with light olefins using sulfuric acid. Operating variables affecting physical phenomena only[J]. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(3):434-440.
|
[17] |
SPROW F B. Role of interfacial area in sulfuric acid alkylation[J]. Industrial & Engineering Chemistry Process Design and Development, 1969, 8(2):254-257.
|
[18] |
LU J R, THOMAS R K, PENFOLD J. Surfactant layers at the air/water interface:structure and composition[J]. Advances in Colloid and Interface Science, 2000, 84(1/2/3):143-304.
|
[19] |
PATEL H A, NAUMAN E B, GARDE S. Molecular structure and hydrophobic solvation thermodynamics at an octane-water interface[J]. The Journal of Chemical Physics, 2003, 119(17):9199-9206.
|
[20] |
BHARGAVA B, BALASUBRAMANIAN S. Layering at an ionic liquid-vapor interface:a molecular dynamics simulation study of[bmim] [PF6] [J]. Journal of the American Chemical Society, 2006, 128(31):10073-10078.
|
[21] |
LYNDEN-BELL R M, DEL POPOLO M G, YOUNGS T G, et al. Simulations of ionic liquids, solutions, and surfaces[J]. Acc. Chem. Res., 2007, 40:1138-1145.
|
[22] |
SANTOS C S, BALDELLI S. Gas-liquid interface of room-temperature ionic liquids[J]. Chemical Society Reviews, 2010, 39(6):2136-2145.
|
[23] |
VAN DER SPOEL D, LINDAHL E, HESS B, et al. GROMACS:fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16):1701-1718.
|
[24] |
JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45):11225-11236.
|
[25] |
CANONGIA LOPES J N, DESCHAMPS J, PADUA A A H. Modeling ionic liquids using a systematic all-atom force field[J]. The Journal of Physical Chemistry B, 2004, 108(6):2038-2047.
|
[26] |
CANONGIA LOPES J N, PADUA A A H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions[J]. The Journal of Physical Chemistry B, 2004, 108(43):16893-16898.
|
[27] |
CANONGIA LOPES J N, PADUA A A H. Molecular force field for ionic liquids (Ⅲ):Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions[J]. The Journal of Physical Chemistry B, 2006, 110(39):19586-19592.
|
[28] |
CANONGIA LOPES J N, PADUA A A H, SHIMIZU K. Molecular force field for ionic liquids (Ⅳ):Trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions[J]. The Journal of Physical Chemistry B, 2008, 112(16):5039-5046.
|
[29] |
KODDERMANN T, PASCHEK D, LUDWIG R. Molecular dynamic simulations of ionic liquids:a reliable description of structure, thermodynamics and dynamics[J]. ChemPhysChem, 2007, 8(17):2464-2470.
|
[30] |
CHAUMONT A, SCHURHAMMER R, WIPFF G. Aqueous interfaces with hydrophobic room-temperature ionic liquids:a molecular dynamics study[J]. The Journal of Physical Chemistry B, 2005, 109(40):18964-18973.
|
[31] |
COLMENARES P J, LOPEZ F, OLIVARES-RIVAS W. Molecular dynamics and analytical Langevin equation approach for the self-diffusion constant of an anisotropic fluid[J]. Physical Review E, 2009, 80(6):061123.
|
[32] |
HU Y F, LV W J, ZHAO S, et al. Effect of surfactant SDS on DMSO transport across water/hexane interface by molecular dynamics simulation[J]. Chemical Engineering Science, 2015, 134:813-822.
|
[33] |
SHAN W, YANG Q, SU B, et al. Proton microenvironment and interfacial structure of sulfonic-acid-functionalized ionic liquids[J]. The Journal of Physical Chemistry C, 2015, 119(35):20379-20388.
|
[34] |
HU Y F, LV W J, SHANG Y Z, et al. DMSO transport across water/hexane interface by molecular dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2013, 52(19):6550-6558.
|
[35] |
LAW G, WATSON P R. Surface orientation in ionic liquids[J]. Chemical Physics Letters, 2001, 345(1/2):1-4.
|
[36] |
FITCHETT B D, ROLLINS J B, CONBOY J C. Interfacial tension and electrocapillary measurements of the room temperature ionic liquid/aqueous interface[J]. Langmuir, 2005, 21(26):12179-12186.
|
[37] |
BALTAZAR Q Q, CHANDAWALLA J, SAWYER K, et al. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 302(1/2/3):150-156.
|
[38] |
LISAL M, POSEL Z, IZAK P. Air-liquid interfaces of imidazolium-based[TF2N-] ionic liquids:insight from molecular dynamics simulations[J]. Physical Chemistry Chemical Physics, 2012, 14(15):5164-5177.
|
[39] |
LLOTD E. Handbook of Applied Mathematics:Vol. 2:Probability[J]. John Wiley & Sons, Ltd., 1980:382-385.
|
[40] |
LINDSEY C P, PATTERSON G D. Detailed comparison of the Williams-Watts and Cole-Davidson functions[J]. The Journal of Chemical Physics, 1980, 73(7):3348-3357.
|