化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3836-3846.DOI: 10.11949/0438-1157.20190621
王均凤1,2(),聂毅1,2,王斌琦1,康召青2,周乐1,2,潘凤娇2,张香平1,2()
收稿日期:
2019-06-04
修回日期:
2019-07-12
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
张香平
作者简介:
王均凤(1974—),女,博士,副研究员,基金资助:
Junfeng WANG1,2(),Yi NIE1,2,Binqi WANG1,Zhaoqing KANG2,Le ZHOU1,2,Fengjiao PAN2,Xiangping ZHANG1,2()
Received:
2019-06-04
Revised:
2019-07-12
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xiangping ZHANG
摘要:
首先概述了再生纤维素纤维制造技术的发展历史,总结了以天然纤维素为原料的黏胶纤维、Lyocell纤维和离子液体纤维(Ioncell)及其技术发展现状。重点介绍了这三种再生纤维素纤维的性能、应用领域及市场前景,并比较了其生产工艺,包括纺丝原液的制备、纺丝工艺、溶剂回收等。与黏胶纤维相比,Lyocell 纤维和Ioncell纤维在溶解纤维素及干喷湿纺纺丝方面具有独特的优势。进一步对该类技术的重点和难点,如纺丝原液的连续制备和溶剂的高效回收进行了分析。与Lyocell纤维使用的NMMO溶剂相比,Ioncell纤维使用的离子液体具有离子液体可设计等优点,可根据纤维素原料的不同来源,设计合成对纤维素具有更好的溶解能力而无降解特征且环境友好的离子液体溶剂,同时对温度、金属离子具有很好的稳定性,为发展新一代纤维素绿色制造技术提供了新途径。另外,对Ioncell纤维存在的问题也进行了详细的分析,提出了未来拟开展的重点研究方向和拟解决的关键难题。
中图分类号:
王均凤, 聂毅, 王斌琦, 康召青, 周乐, 潘凤娇, 张香平. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846.
Junfeng WANG, Yi NIE, Binqi WANG, Zhaoqing KANG, Le ZHOU, Fengjiao PAN, Xiangping ZHANG. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846.
纤维材料 | 再生纤维类型 | 溶剂 | DP | 纤维素含量/%(mass) | 溶解温度/℃ | 喷头直径/μm | 空隙/mm | 拉伸比 | 断裂强度/ (cN/dtex) | 伸长率/% |
---|---|---|---|---|---|---|---|---|---|---|
山毛榉[ | Ioncell | [Amim]Cl | 1180 | 12.5 | 75 | 100 | — | 10.5 | 3.22 | 8.4 |
桉树[ | Ioncell | [Amim]Cl | 815 | 10 | 100 | 100 | — | 8.6 | 2.68 | 10.8 |
桉树[ | Ioncell | [Amim]Cl | 790 | 11 | 70 | 100 | — | 6.2 | 4.16 | 12.2 |
桉树[ | Ioncell | [Bmim]Ac | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
桉树[ | Ioncell | [Bmim]Cl | 514 | 13.6 | 116 | 100 | 80 | 10.6 | 5.34 | 13.1 |
桉树[ | Ioncell | [Bmim]Cl | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
棉[ | Ioncell | [Bmim]Cl | 514 | 5 | 90 | 150 | 80 | 5 | 4.21 | 6.2 |
桉树[ | Ioncell | [Emim]Ac | 592 | 10 | 20 | 90 | 10 | 2.3 | 2.46 | 3.8 |
桉树[ | Ioncell | [Emim]Ac | 515 | 19.6 | 99 | 90 | 40 | 10.3 | 4.56 | 11.2 |
竹子[ | Ioncell | [Emim]Ac | 1120 | 8 | 85 | 145 | 50 | 3.5 | 3.2 | 7.8 |
竹茎[ | Ioncell | [Emim]Ac | — | 5 | 175 | 210 | — | — | 1.05 | 9.45 |
桉树[ | Ioncell | [Eimm]Cl | 493 | 15.8 | 99 | 90 | 55 | 7.9 | 5.31 | 12.9 |
桉树[ | Ioncell | [Emim]Dep | 592 | 10 | 60 | 90 | 10 | 1.9 | 2.64 | 6 |
桉树[ | Ioncell | [DBNH]Ac | 1489 | 13 | 70 | 100 | 10 | 7.5 | 3.85 | — |
桉树[ | Ioncell | [TMGH]Ac | 1489 | 13 | 80 | 100 | 10 | 2.9 | 1.09 | — |
棉短绒[ | Lyocell | DMSO | 1600 | 6~8 | 110 | 150 | 20 | — | 3.7~5.4 | 1.9~6.6 |
纤维素[ | 黏胶纤维 | NaOH/CS2 | 235~300 | — | — | — | — | — | 1.8~2.5 | 18~23 |
表1 Ioncell, Lyocell及黏胶纤维的性能
Table 1 Performance of Ioncell, Lyocell and viscous fibers
纤维材料 | 再生纤维类型 | 溶剂 | DP | 纤维素含量/%(mass) | 溶解温度/℃ | 喷头直径/μm | 空隙/mm | 拉伸比 | 断裂强度/ (cN/dtex) | 伸长率/% |
---|---|---|---|---|---|---|---|---|---|---|
山毛榉[ | Ioncell | [Amim]Cl | 1180 | 12.5 | 75 | 100 | — | 10.5 | 3.22 | 8.4 |
桉树[ | Ioncell | [Amim]Cl | 815 | 10 | 100 | 100 | — | 8.6 | 2.68 | 10.8 |
桉树[ | Ioncell | [Amim]Cl | 790 | 11 | 70 | 100 | — | 6.2 | 4.16 | 12.2 |
桉树[ | Ioncell | [Bmim]Ac | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
桉树[ | Ioncell | [Bmim]Cl | 514 | 13.6 | 116 | 100 | 80 | 10.6 | 5.34 | 13.1 |
桉树[ | Ioncell | [Bmim]Cl | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
棉[ | Ioncell | [Bmim]Cl | 514 | 5 | 90 | 150 | 80 | 5 | 4.21 | 6.2 |
桉树[ | Ioncell | [Emim]Ac | 592 | 10 | 20 | 90 | 10 | 2.3 | 2.46 | 3.8 |
桉树[ | Ioncell | [Emim]Ac | 515 | 19.6 | 99 | 90 | 40 | 10.3 | 4.56 | 11.2 |
竹子[ | Ioncell | [Emim]Ac | 1120 | 8 | 85 | 145 | 50 | 3.5 | 3.2 | 7.8 |
竹茎[ | Ioncell | [Emim]Ac | — | 5 | 175 | 210 | — | — | 1.05 | 9.45 |
桉树[ | Ioncell | [Eimm]Cl | 493 | 15.8 | 99 | 90 | 55 | 7.9 | 5.31 | 12.9 |
桉树[ | Ioncell | [Emim]Dep | 592 | 10 | 60 | 90 | 10 | 1.9 | 2.64 | 6 |
桉树[ | Ioncell | [DBNH]Ac | 1489 | 13 | 70 | 100 | 10 | 7.5 | 3.85 | — |
桉树[ | Ioncell | [TMGH]Ac | 1489 | 13 | 80 | 100 | 10 | 2.9 | 1.09 | — |
棉短绒[ | Lyocell | DMSO | 1600 | 6~8 | 110 | 150 | 20 | — | 3.7~5.4 | 1.9~6.6 |
纤维素[ | 黏胶纤维 | NaOH/CS2 | 235~300 | — | — | — | — | — | 1.8~2.5 | 18~23 |
再生纤维素纤维类型 | 应用领域 |
---|---|
Lyocell | 主要用于服装、装饰及产业用三大领域 |
黏胶纤维 | 服装、民用、轮胎帘子线等 |
竹纤维 | 高档服装,家用纺织品等 |
丽赛纤维 | 功能化服装等 |
香蕉纤维 | 医疗、电子材料、复合材料和模塑材料等 |
表2 再生纤维素纤维的应用领域
Table 2 Application fields of cellulose fiber
再生纤维素纤维类型 | 应用领域 |
---|---|
Lyocell | 主要用于服装、装饰及产业用三大领域 |
黏胶纤维 | 服装、民用、轮胎帘子线等 |
竹纤维 | 高档服装,家用纺织品等 |
丽赛纤维 | 功能化服装等 |
香蕉纤维 | 医疗、电子材料、复合材料和模塑材料等 |
图10 水与[Bmim]BF4的阳离子和阴离子间形成的稳定分子构型[63]
Fig.10 Typical molecular complexes between water and cation/anion in [Bmim]BF4/water mixture at water mole faction of 0.1[63]
1 | WoodingsC. Regenerated Cellulose Fibres[M]. Amsterdam: Elsevier, 2001. |
2 | ZhouR, LiC G, YangM X. Comparative study on structural performance of several new regenerated cellulose fibers[J]. Advanced Materials Research, 2012, 573/574: 174-180. |
3 | 杨明霞, 沈兰萍. 新型再生纤维素纤维的现状及发展趋势[J]. 纺织科技进展, 2011, (2): 16-20. |
YangM X, ShenL P. Development status and strend of new regenerated cellulose fiber[J]. Progress in Textile Science & Technology, 2011, (2): 16-20. | |
4 | 李雄彪. 纤维素的化学结构,生物合成和糖化研究[J]. 大自然探索, 1992, (1): 56-62. |
LiX B. Structure, biosynthesis and saccharification of cellulose[J]. Exploration of Nature, 1992, (1): 56-62. | |
5 | 刘洁, 杨肖婉, 齐静. 再生纤维素纤维溶剂体系的发展[J]. 纺织导报, 2018, (3): 36-38. |
LiuJ, YangX W, QiJ. The development of solvent system for regenerated cellulose fiber[J]. China Textile Leader, 2018, (3): 36-38. | |
6 | PerepelkinK. Ways of developing chemical fibres based on cellulose: viscose fibres and their prospects (Part 1): Development of viscose fibre technology. Alternative hydrated cellulose fibre technology[J]. Fibre Chemistry, 2008, 40(1): 10-23. |
7 | MoritzA J L, JacksonA L, ThurmondG I. Manufacture of rayon: US 2346696[P]. 1944-4-18. |
8 | 季柳炎. 从百年发展史看粘胶纤维之未来[J]. 纺织科学研究, 2017, (10): 25-29. |
JiL Y. Prospecting the future of viscose fiber from the development history of one hundred year[J]. Textile Science Research, 2017, (10): 25-29. | |
9 | 刘为民. 上规模 降成本 增效益——粘胶纤维行业及上市公司比较分析[J]. 中国纺织, 1999, (6): 20-23. |
LiuW M. Upscale, cutting cose, increasing benefit—comparative analysis of viscose fiber industry and listed cmpany[J]. China Textile, 1999, (6): 20-23. | |
10 | 季柳炎. 2018~2019年我国粘胶短纤维市场回顾与展望[J]. 人造纤维, 2019, (1): 28-32. |
JiL Y. Review and prospect of viscose staple fiber market in China from 2018 to 2019[J]. Artificial Fiber, 2019, (1): 28-32. | |
11 | RanabhatR. Environmental impact of textile fibers: a case study of Nextiili-paja[D]. Tampere: Tampere University of Applied Sciences, 2019: 15-16. |
12 | ZhangH X, ZhangX C, XuR C. Structure and thermo-regulated performance of outlast viscose fiber[J]. Advanced Materials Research, 2011, 332/333/334: 812-815. |
13 | KonwarhR, KarakN, MisraM. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications[J]. Biotechnology Advances, 2013, 31(4): 421-437. |
14 | HatuaP, MajumdarA, DasA. Comparative analysis of in vitro ultraviolet radiation protection of fabrics woven from cotton and bamboo viscose yarns[J]. Journal of the Textile Institute Proceedings & Abstracts, 2013, 104(7): 708-714. |
15 | 董奎勇, 杨萍. Lyocell纤维发展概况及趋势[J]. 中国纤检, 2004, (11): 40-42. |
DongK Y, YangP. Developmet situation and trend of Lyocell fiber[J]. China Fiber Inspection, 2004, (11): 40-42. | |
16 | 王乐军, 刘怡宁, 房迪, 等. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(4): 164-170. |
WangL J, LiuY N, FangD, et al. Status and development research of Lyocell fiber at home and abroad[J]. Journal of Textile Research, 2017, 38(4): 164-170. | |
17 | SwatloskiR P, SpearS K, HolbreyJ D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of America Chemistry Society, 2002, 124 (18): 4974-4975. |
18 | SunN, SwatloskiR P, MaximM L, et al. Magnetite-embedded cellulose fibers prepared from ionic liquid[J]. Journal of Materials Chemistry, 2008, 18(3): 283-290. |
19 | JiangG S, HuangW F, WangB C, et al. The changes of crystalline structure of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride[J]. Cellulose, 2012, 19(3): 679-685. |
20 | JiangG S, HuangW F, LiL, et al. Structure and properties of regenerated cellulose fibers from different technology processes[J]. Carbohydrate Polymers, 2012, 87(3): 2012-2018. |
21 | LiuY R, ThomsenK, NieY, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254. |
22 | HermanutzF, VochtM P, PanzierN, et al. Processing of cellulose using ionic liquids[J]. Macromolecular Materials and Engineering, 2019, 304: 1-8. |
23 | 任强, 武进, 张军, 等. 1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J]. 高分子学报, 2003, (3): 448-451. |
RenQ, WuJ, ZhangJ, et al. Synthesis of 1-allyl-3-methylimicazolium-based room temperature ionic liquid and preliminary study of its dissolving cellulose[J]. Acta Polymerica Sinica, 2003, (3): 448-451. | |
24 | ZhangH, WangZ G, ZhangZ N, et al. Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride[J]. Advance Materials, 2007, 19(5): 698-704. |
25 | HermanutzF, GaehrF, UerdingenE, et al. New developments in dissolving and processing of cellulose in ionic liquids[J]. Macromolecular Symposia, 2008, 262: 23-27. |
26 | FukayaY, HayashiK, WadaM, et al. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions[J]. Green Chemistry, 2008, 10(1): 44-46. |
27 | NieY, LiC X, SunA J, et al. Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids[J]. Energy & Fuel, 2006, 20 (5): 2083-2087. |
28 | KamiyaN, MatsushitaY, HanakiM, et al. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media[J]. Biotechnology Letters, 2008, 30(6): 1037-1040. |
29 | ZhuC, RichardsonR M, PotterK D, et al. High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4545-4553. |
30 | ZhuC C, KoutsomitopoulouA F, EichhornS J, et al. High stiffness cellulose fibers from low molecular weight microcrystalline cellulose solutions using DMSO as co-solvent with ionic liquid[J]. Macromolecular Materials and Engineering, 2018, 303(5): 1-6. |
31 | SixtaH, MichudA, HauruL, et al. Ioncell-F: a high-strength regenerated cellulose fiber[J]. Nord. Pulp. Pap. Res. J., 2015, 30(1): 43-57. |
32 | MichudA, TanttuM, AsaadiS, et al. Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell[J]. Textile Research Journal, 2016, 86(5): 543-552. |
33 | StepanA M, MichudA, HelistenS, et al. IONCELL-P&F: pulp fractionation and fiber spinning with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 8225-8233. |
34 | AsaadiS, HummelM, AhvenainenP, et al. Structural analysis of Ioncell-F fibers from birch wood[J]. Carbohydrate Polymers, 2018, 181: 893-901. |
35 | MaY, HummelM, KontroI, et al. High performance man-made cellulosic fibers from recycled newsprint[J]. Green Chemistry, 2018, 20(1): 160-169. |
36 | HummelM, MichudA, TanttuM, et al. Ionic liquids for the production of man-made cellulosic fibers opportunities and challenges[M]// Rojas O J. Advances in Polymer Science. Berlin: Springer, 2016: 133-168. |
37 | ChenJ H, XuJ K, HuangP L, et al. Effect of alkaline pretreatment on the preparation of regenerated lignocellulose fibers from bamboo stem[J]. Cellulose, 2016, 23(4): 2727-2739. |
38 | HauruL K J, HummelM, MichudA, et al. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution[J]. Cellulose, 2014, 21(6): 4471-4481. |
39 | YooM K, RezaM S, KimI M, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter Pulp/NMMO solution[J]. Fiber and Polymers, 2015, 16(8): 1618-1628. |
40 | KrezeT, MalejS. Structural characteristics of new and conventional regenerated cellulosic fibers[J]. Textile Research Journal, 2003, 73(8): 675-684. |
41 | ChenJ H, GuanY, WangK, et al. Regulating effect of hemicelluloses on the preparation and properties of composite Lyocell fibers[J]. Cellulose, 2015, 22(3): 1505-1516. |
42 | SharmaA, NagarkarS, ThakreS, et al. Structure–property relations in regenerated cellulose fibers: comparison of fibers manufactured using viscose and Lyocell processes[J]. Cellulose, 2019, 26(6): 3655-3669. |
43 | CarrilloF, ColomX, SuñolJ J, et al. Structural FTIR analysis and thermal characterisation of Lyocell and viscose-type fibers[J]. European Polymer Journal, 2004, 40(9): 2229-2234. |
44 | de SilvaR, ByrneN. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties[J]. Carbohydrate Polymers, 2017, 174: 89-94. |
45 | BulotaM, MichudA, HummelM, et al. The effect of hydration on the micromechanics of regenerated cellulose fibers from ionic liquid solutions of varying draw ratios[J]. Carbohydrate Polymers, 2016, 151: 1110-1114. |
46 | AsaadiS, HummelM, HellstenS, et al. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid[J]. ChemSusChem, 2016, 9: 3250-3258. |
47 | MichudA, HummelM, SixtaH. Influence of process parameters on the structure formation of man-made cellulosic fibers from ionic liquid solution[J]. Journal of Applied Polymer Science, 2016, 133(30): 43718-43726. |
48 | 纤维材料的特征及行业市场需求情况分析[EB/OL]. [2019-05-29]. . |
Characteristics of fiber material and demand analysis of industrial market[EB/OL]. [2019-05-29]. . | |
49 | 再生纤维机会来临发展前景好[EB/OL]. [2019-05-29]. . |
Good development future of regenerated fiber[EB/OL]. [2019-05-29]. . | |
50 | 全球化纤中短期发展预测及产业用纤维发展趋势[EB/OL]. [2019-05-29]. . |
Forecast of mid- or short-fiber and development trend of industrial fiber in the world [EB/OL]. [2019-05-29]. . | |
51 | 汪进秋. 粘胶纤维生产工艺技术[J]. 人造纤维, 2000, (1): 42-44. |
WangJ Q. Technology of viscose fiber[J]. Artificial Fiber, 2000, (1): 42-44. | |
52 | 王建荣, 刘杰. 浸渍压榨液半纤维素含量测定方法改进探讨[J]. 人造纤维, 2014, 44(6): 25-27. |
WangJ R, LiuJ. Improvement discussion for the measurement method of hemicellulose content in the pressed liquor [J]. Artificial Fiber, 2014, 44(6): 25-27. | |
53 | RajalaxmiD, JiangN, LeslieG, et al. Synthesis of novel water-soluble sulfonated cellulose[J]. Carbohydrate Research, 2010, 345(2): 284-290. |
54 | IvanovA A, RzhevtsevaY I, KimV P. Effect of precipitation bath composition on the process of spinning viscose yarn[J]. Fiber Chemistry, 1987, 19(1): 57-60. |
55 | WilkesA G. The viscose process[M]// Woodings C. Regenerated Cellulose Fibers. England: Woodhead Publishing Limited, 2001: 37-61. |
56 | WuC, ZhouS, ZhaoC, et al. Improved reactivity of bamboo dissolving pulp for the viscose process: post-treatment with beating[J]. BioResources, 2014, 9(2): 3449-3455. |
57 | 雷海斌. Lyocell纤维纺丝溶剂NMMO溶液蒸发特性研究[J]. 福建轻纺, 2017, (8): 33-35. |
LeiH B. Study on evaporation characteristic of NMMO solution obtained during the process of Lyocell fiber spinning [J]. The Light&Textile Industries of Fujian, 2017, (8): 33-35. | |
58 | KosanB, MichelsC, MeisterF. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose, 2008, 15(1): 59-66. |
59 | ZhangJ M, ZhangH, WuJ, et al. NMR spectroscopic studies of cellulose solvation in [Emim]Ac aimed to understand the dissolution mechanism of cellulose in ionic liquids[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1941-1947. |
60 | LiY, WangJ J, LiuX M, et al. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects[J]. Chemical Science, 2018, 9 (17): 4027-4043. |
61 | FengL, ChenZ I. Research progress on dissolution and functional modification of cellulose in ionic liquids[J]. Journal of Molecular Liquids, 2008, 142(1-3): 1-5. |
62 | XuJ L, YaoX Q, XinJ Y, et al. An effective two-step ionic liquids method for cornstalk pretreatment[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 2057-2065. |
63 | ZhongX J, FanZ, LiuZ P, et al. Local structure evolution and its connection to thermodynamic and transport properties of 1-butyl-3-methylimidazolium tetrafluoroborate and water mixtures by molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2012, 116: 3249-3263. |
64 | WangJ F, LuoJ Q, ZhangX P, et al. Concentration of ionic liquids by nanofiltration for recycling: filtration behavior and modeling[J]. Separation & Purification Technology, 2016, 165: 18-26. |
65 | DengY, LongT, ZhangD, et al. Phase diagram of [Amim]Cl plus salt aqueous biphasic systems and its application for [Amim]Cl recovery[J]. Journal of Chemical & Engineering Data, 2009, 54(9): 2470-2473. |
66 | LiC, HanJ, WangY, et al. Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts[J]. Journal of Chemical & Engineering Data, 2009, 55(3): 1087-1092. |
67 | PengX, HuY, LiuY, et al. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates[J]. Journal of Natural Gas Chemistry, 2010, 19(1): 81-85. |
68 | WangJ, LuoJ, ZhangX, et al. Concentration of ionic liquids by nanofiltration for recycling: filtration behavior and modeling [J]. Separation and Purification Technology, 2016, 165: 18-26. |
69 | GanQ, XueM, RooneyD. A study of fluid properties and microfiltration characteristics of room temperature ionic liquids [C10min][NTf2] and N8881[NTf2] and their polar solvent mixtures[J]. Separation and Purification Technology, 2006, 51(2): 185-192. |
70 | WangX, NieY, ZhangX, et al. Recovery of ionic liquids from dilute aqueous solutions by electrodialysis[J]. Desalination, 2012, 285: 205-212. |
71 | HuangK L, WuR, CaoY, et al. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation[J]. Chinese Journal of Chemical Engineering, 2013, 21(5): 577-584. |
72 | EarleM J, SeddonK R. Preparation of imidazole carbenes and the use thereof for the synthesis of ionic liquids: WO/2001/077081[P]. 2001-04-05. |
[1] | 蔡卫滨, 夏阳, 王玉军, 李继定, 朱慎林. 白炭黑填充PDMS/PVDF复合膜的纳滤分离性能及传质特性[J]. 化工学报, 2015, 66(7): 2555-2564. |
[2] | 陈京环, 王堃, 许凤, 孙润仓. 新型溶剂法制备再生纤维素纤维研究进展[J]. CIESC Journal, 2014, 65(11): 4213-4221. |
[3] | 蔡卫滨, 朴香兰, 李继定, 朱慎林. 不同交联剂对PDMS/PVDF纳滤膜溶剂回收性能的影响[J]. 化工学报, 2013, 64(2): 581-589. |
[4] | 李奕川1,沈本贤1,王 雷1,2,肖卫国2,赵基钢1. 丙烯直接环氧化溶剂回收过程的能耗模拟与优化[J]. 化工进展, 2012, 31(12): 2806-2810. |
[5] | 张丹丹, 徐舜华, 刘智勇. 采用单一重组分代替复杂馏分模拟酮苯脱蜡溶剂回收过程 [J]. 化工学报, 2011, 62(2): 477-481. |
[6] | 徐慎刚,刘民英,曹少魁,刘初锋,贾俊江,谢跃亭. 黏胶纤维和Lyocell纤维作为香烟滤嘴材料的应用进展 [J]. CIESC Journal, 2008, 27(11): 1756-. |
[7] | 何小荣,孙柏铭,陈丙珍,涂仁强. 酮苯脱蜡溶剂回收系统的节能与优化 [J]. CIESC Journal, 1997, 48(4): 389-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||