CIESC Journal ›› 2014, Vol. 65 ›› Issue (11): 4213-4221.DOI: 10.3969/j.issn.0438-1157.2014.11.001
陈京环, 王堃, 许凤, 孙润仓
收稿日期:
2014-06-16
修回日期:
2014-07-25
出版日期:
2014-11-05
发布日期:
2014-11-05
通讯作者:
孙润仓
基金资助:
CHEN Jinghuan, WANG Kun, XU Feng, SUN Runcang
Received:
2014-06-16
Revised:
2014-07-25
Online:
2014-11-05
Published:
2014-11-05
Supported by:
摘要: 再生纤维素纤维以可再生、可生物降解的天然纤维素为原料,它的研究和开发对充分利用纤维素资源和促进纤维行业的可持续发展具有重要意义.离子液体和碱溶液溶剂体系对纤维素具有独特的溶解性能,为再生纤维素纤维的制备提供了新方法.这种新型的再生纤维素纤维具有制备过程简单、对环境无污染、纤维力学性能优异或生产成本低等优点,发展前景十分广阔.综述了离子液体法和碱溶液法再生纤维素纤维的最新研究进展,包括溶剂种类及其溶解能力、纤维素原料的性质与选择、纤维的制备方法和力学性能等,同时归纳和对比了各因素对新型再生纤维素纤维力学性能的影响.最后展望了两种新型再生纤维素纤维存在的挑战、未来发展趋势和工业化前景.
中图分类号:
陈京环, 王堃, 许凤, 孙润仓. 新型溶剂法制备再生纤维素纤维研究进展[J]. CIESC Journal, 2014, 65(11): 4213-4221.
CHEN Jinghuan, WANG Kun, XU Feng, SUN Runcang. Progress of preparing regenerated cellulose fibers using novel dissolution process[J]. , 2014, 65(11): 4213-4221.
[1] | Charles G. Cellulose solution [P]: US, 1943176. 1934-01-09 |
[2] | Swatloski R P, Spear S K, Holbrey J D, Rogers R D. Dissolution of cellulose correction of cellose with ionic liquids [J]. J. Am. Chem. Soc., 2002, 124 (18): 4974-4975 |
[3] | Li Changzhi (李昌志), Wang Aiqin (王爱琴), Zhang Tao (张涛). Progress of conversion of cellulose resource in ionic liquids [J]. CIESC Journal (化工学报), 2013, 64 (1): 182-197 |
[4] | Sobue H, Kiessig H, Hess K. Das system cellulose-natriumhydroxyd- wasser in abhängigkeit von der temperatur [J]. Z. Physik Chem. B, 1939, 43: 309-328 |
[5] | Zhou J P, Zhang L N. Solubility of cellulose in NaOH/urea aqueous solution [J]. Polym. J., 2000, 32 (10): 866-870 |
[6] | Zhang J M, Zhang H, Wu J, Zhang J, He J S, Xiang J F. NMR spectroscopic studies of cellobiose solvation in [Emim]Ac aimed to understand the dissolution mechanism of cellulose in ionic liquids [J]. Phys. Chem. Chem. Phys., 2010, 12 (8): 1941-1947 |
[7] | Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G. NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions [J]. Cellulose, 2013, 20 (2): 613-621 |
[8] | Wang H, Gurau G, Rogers R D. Ionic liquid processing of cellulose [J]. Chem. Soc. Rev., 2012, 41 (4): 1519-1537 |
[9] | Feng L, Chen Z L. Research progress on dissolution and functional modification of cellulose in ionic liquids [J]. J. Mol. Liq., 2008, 142 (1): 1-5 |
[10] | Zhang H, Wu J, Zhang J, He J S. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose [J]. Macromolecules, 2005, 38 (20): 8272-8277 |
[11] | Zhao D S, Liu M S, Ren H W, Li H, Fu L, Ren P. Dissolution of cellulose in NaOH based solvents at low temperature [J]. Fiber Polym., 2013, 14 (8): 1261-1265 |
[12] | Zavrel M, Bross D, Funke M, Buchs J, Spiess A C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose [J]. Bioresour. Technol., 2009, 100 (9): 2580-2587 |
[13] | Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids [J]. Cellulose, 2008, 15 (1): 59-66 |
[14] | Guo Qinghua (郭清华), Cai Tao (蔡涛), Zhang Huihui (张慧慧), Shao Huili (邵惠丽), Hu Xuechao (胡学超). Comparison of dissolution and spinning performances of cellulose using two kinds of imidazole-based ionic liquids as the solvents [J]. Synthetic Fiber in China (合成纤维), 2009, 38 (4): 20-25 |
[15] | Egal M, Budtova T, Navard P. Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0℃ and the limit of cellulose dissolution [J]. Biomacromolecules, 2007, 8 (7): 2282-2287 |
[16] | Cai J, Zhang L N. Unique gelation behavior of cellulose in NaOH/urea aqueous solution [J]. Biomacromolecules, 2006, 7 (1): 183-189 |
[17] | Kihlman M, Medronho B F, Romano A L, Germgård U, Lindman B. Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments [J]. CA. Cancer J. Clin., 2013, 24 (2): 295-303 |
[18] | Liu W, Budtova T, Navard P. Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions [J]. Cellulose, 2011, 18 (4): 911-920 |
[19] | Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L. Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature [J]. Carbohydr. Polym., 2011, 83 (3): 1185-1191 |
[20] | Kim S J, Jang J. Effect of degree of polymerization on the mechanical properties of regenerated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride [J]. Fiber Polym., 2013, 14 (6): 909-914 |
[21] | Olsson C, Westman G. Wet spinning of cellulose from ionic liquid solutions-viscometry and mechanical performance [J]. J. Appl. Polym. Sci., 2013, 127 (6): 4542-4548 |
[22] | Sun N, Li W, Stoner B, Jiang X, Lu X, Rogers R D. Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids [J]. Green Chem., 2011, 13 (5): 1158 |
[23] | Kang Y, Ahn Y, Lee S H, Hong J H, Ku M K, Kim H. Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid [J]. Fiber Polym., 2013, 14 (4): 530-536 |
[24] | Qi H, Chang C, Zhang L. Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution [J]. Cellulose, 2008, 15 (6): 779-787 |
[25] | Kihlman M, Wallberg O, Stigsson L, Germgard U. Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments [J]. Holzforschung, 2011, 65 (4): 613-617 |
[26] | Wang Y, Zhao Y, Deng Y. Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature [J]. Carbohydr. Polym., 2008, 72 (1): 178-184 |
[27] | Trygg J, Fardim P. Enhancement of cellulose dissolution in water-based solvent via ethanol-hydrochloric acid pretreatment [J]. Cellulose, 2011, 18 (4): 987-994 |
[28] | Cui Mei (崔美), Huang Renliang (黄仁亮), Su Rongxin (苏荣欣), Qi Wei (齐葳), Zhang Yimin (张毅民), He Zhimin (何志敏). An overview on lignocellulose pretreatment and recalcitrant characteristics [J]. CIESC Journal (化工学报), 2012, 63 (3): 677-687 |
[29] | Santos N M, Puls J, Saake B, Navard P. Effects of nitren extraction on a dissolving pulp and influence on cellulose dissolution in NaOH-water [J]. Cellulose, 2013, 20 (4): 2013-2026 |
[30] | Sescousse R, Smacchia A, Budtova T. Influence of lignin on cellulose-NaOH-water mixtures properties and on aerocellulose morphology [J]. Cellulose, 2010, 17 (6): 1137-1146 |
[31] | Spinu M, Santos N, Le Moigne N, Navard P. How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? [J]. Cellulose, 2010, 18 (2): 247-256 |
[32] | Ingildeev D, Effenberger F, Bredereck K, Hermanutz F. Comparison of direct solvents for regenerated cellulosic fibers via the lyocell process and by means of ionic liquids [J]. J. Appl. Polym. Sci., 2013, 128 (6): 4141-4150 |
[33] | Ahn Y, Hu D H, Hong J H, Lee S H, Kim H J, Kim H. Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber [J]. Carbohydr. Polym., 2012, 89 (2): 340-345 |
[34] | Quan S L, Kang S G, Chin I J. Characterization of cellulose fibers electrospun using ionic liquid [J]. Cellulose, 2009, 17 (2): 223-230 |
[35] | Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P. Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents [J]. J. Appl. Polym. Sci., 2012, 125 (3): 1901-1909 |
[36] | Freire M G, Teles A R R, Ferreira R A S, Carlos L D, Lopes-Da-Silva J A, Coutinho J A P. Electrospun nanosized cellulose fibers using ionic liquids at room temperature [J]. Green Chem., 2011, 13 (11): 3173 |
[37] | Song J, Lu F, Cheng B W, Hu X Y, Ma C. Melt blowing of ionic liquid-based cellulose solutions [J]. Fiber Polym., 2014, 15 (2): 291-296 |
[38] | Cai T, Zhang H, Guo Q, Shao H, Hu X. Structure and properties of cellulose fibers from ionic liquids [J]. J. Appl. Polym. Sci., 2010, 115 (2): 1047-1053 |
[39] | Xu S, Zhang J, He A, Li J, Zhang H, Han C C. Electrospinning of native cellulose from nonvolatile solvent system [J]. Polymer, 2008, 49 (12): 2911-2917 |
[40] | Qin X, Lu A, Zhang L. Effect of stirring conditions on cellulose dissolution in NaOH/urea aqueous solution at low temperature [J]. J. Appl. Polym. Sci., 2012, 126 (S1): E470-E477 |
[41] | Vehviläinen M, Kamppuri T, Rom M, Janicki J, Ciechańska D, Grönqvist S, Siika-Aho M, Elg Christoffersson K, Nousiainen P. Effect of wet spinning parameters on the properties of novel cellulosic fibres [J]. Cellulose, 2008, 15 (5): 671-680 |
[42] | Yuan M, Na Z L, Jie C, Ping Z J, Tetsuo K. Effects of coagulation conditions on properties of multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution [J]. Ind. Eng. Chem. Res., 2008, 47 (22): 8676-8683 |
[43] | Yu Muhuo (余木火), Zhang Yue (张玥), Han Keqing (韩克清), et al. Research progress in cellulose fiber preparation with alkali/urea aqueous solution at low temperature [J]. Journal of Textile Research (纺织学报), 2014, 35 (2): 121-132 |
[44] | Qi H, Sui X, Yuan J, Wei Y, Zhang L. Electrospinning of cellulose-based fibers from NaOH/urea aqueous system [J]. Macromol. Mater. Eng., 2010, 295 (8): 695-700 |
[45] | Zhang S, Li F X, Yu J Y. Structure and properties of novel cellulose fibres produced from NaOH/PEG-treated cotton linters [J]. Iran. Polym. J., 2010, 19 (12): 949-957 |
[46] | Zhang Huihui (张慧慧), Cai Tao (蔡涛), Zhou Zhenxing (周振兴), Shao Huili (邵惠丽), Hu Xuechao (胡学超). Effect of pulp characteristics on properties of cellulose/[Bmim]Cl spinning dope [J]. China Synthetic Fiber (合成纤维工业), 2011, 34 (5): 8-10 |
[47] | Cai Tao (蔡涛), Yang Yurong (杨瑜榕), Wang Mingkui (王明葵). Effect of bamboo pulp on the properties of regenerated bamboo fiber using ionic liquid solution [J]. Synthetic Fiber in China (合成纤维), 2012, 41 (10): 21-24 |
[48] | Jiang G, Yuan Y, Wang B, Yin X, Mukuze K S, Huang W, Zhang Y, Wang H. Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased [J]. Cellulose, 2012, 19 (4): 1075-1083 |
[49] | Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties [J]. Adv. Mater., 2007, 19 (6): 821-825 |
[50] | Qi H S, Cai J, Zhang L N, Nishiyama Y, Rattaz A. Influence of finishing oil on structure and properties of multi-filament fibers from cellulose dope in NaOH/urea aqueous solution [J]. Cellulose, 2008, 15 (1): 81-89 |
[51] | Ruan D, Zhang L, Zhou J, Jin H, Chen H. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution [J]. Macromol. Biosci., 2004, 4 (12): 1105-1112 |
[52] | Ruan D, Zhang L N, Lue A, Zhou J P, Chen H, Chen X, Chu B, Kondo T. A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system [J]. Macromol. Rapid Commun., 2006, 27 (17): 1495-1500 |
[53] | Zhang S, Wang W C, Li F X, Yu J Y. Non-linear viscoelastic behavior of novel regenerated cellulose fiber in dry and wet condition [J]. Cellul. Chem. Technol., 2013, 47 (5/6): 353-358 |
[54] | Zhang S, Li F X, Yu J Y. Preparation and properties of novel regenerated cellulose fibers via direct dissolution of cellulose in lioh complex aqueous solution [J]. J. Polym. Eng., 2009, 29 (7): 429-440 |
[55] | Jiang G, Huang W, Li L, Wang X, Pang F, Zhang Y, Wang H. Structure and properties of regenerated cellulose fibers from different technology processes [J]. Carbohydr. Polym., 2012, 87 (3): 2012-2018 |
[56] | Ma B, Qin A, Li X, He C. Preparation of cellulose hollow fiber membrane from bamboo pulp/1-butyl-3-methylimidazolium chloride/dimethylsulfoxide system [J]. Ind. Eng. Chem. Res., 2013, 52 (27): 9417-9421 |
[57] | Liu Huan (刘欢), Wei Xiaoyi (魏晓奕), Li Jihua (李积华), Li Te (李特), Wang Fei (王飞). Review of ionic liquids recycling [J]. Journal of Cellulose Science and Technology (纤维素科学与技术), 2013, 21 (2): 63-69 |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[11] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[12] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[13] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[14] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[15] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||