1 |
KoudelakovaT, BidmanovaS, DvorakP, et al. Haloalkane dehalogenases: biotechnological applications[J]. Biotechnol. J., 2013, 8: 32-45.
|
2 |
NagataY, OhtsuboY, TsudaM. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases[J]. Appl. Microbiol. Biotechnol., 2015, 99: 9865-9881.
|
3 |
HarveyP S. Enzymatic degradation of HD[R]. USA: Edgewood Chemical Biological Center, 2002.
|
4 |
BidmanovaS, SteinerM S, StepanM, et al. Enzyme-based test strips for visual or photographic detection and quantitation of gaseous sulfur mustard[J]. J. Anal. Chem., 2016, 88: 6044-6049.
|
5 |
郭楠, 董亮, 刘景全, 等. 烷基卤去卤化酶对芥子气的催化水解[J]. 环境化学, 2015, 34: 1363-1370.
|
|
GuoN, DongL, LiuJ Q, et al. Catalytic hydrolysis of sulfur mustard by haloalkane dehalogenases[J]. Environ. Chem., 2015, 34: 1363-1370.
|
6 |
赵渊中, 钟近艺, 郭楠, 等. 多点突变提高DhaA对芥子气的活性和热稳定性[J]. 应用与环境生物学报, 2017, 23: 714-718.
|
|
ZhaoY Z, ZhongJ Y, GuoN, et al. Improvement in the thermostability and activity of DhaA against sulfur mustard by multipoint mutagenesis[J]. Chin. J. Appl. Environ. Biol., 2017, 23: 714-718.
|
7 |
StepankovaV, DamborskyJ, ChaloupkovaR. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases[J]. Biotechnol. J., 2013, 8: 719-729.
|
8 |
LiskovaV, BednarD, PrudnikovaT, et al. Balancing the stability-activity trade-off by fine-tuning dehalogenase access tunnels[J]. ChemCatChem, 2015, 7: 648-659.
|
9 |
ZhaoY Z, YuW L, ZhengH, et al. PEGylation with the thiosuccinimido butylamine linker significantly increases the stability of haloalkane dehalogenase DhaA[J]. J. Biotechnol., 2017, 254: 25-33.
|
10 |
ZhengH, ZhongJ Y, CuiY, et al. Mesoporous support designed for DhaA adsorption with improved stability[J]. J. Porous. Mat., 2019, 26(3): 829-837.
|
11 |
郑禾, 钟近艺, 崔燕, 等. 荧光光谱法研究氨基改性介孔泡沫对DhaA的稳定化机理[J]. 光谱学与光谱分析, 2019, 39: 1776-1784.
|
|
ZhengH, ZhongJ Y, CuiY, et al. Stabilization mechanism of amino-mesocellular foam to DhaA by fluorescence spectroscopic method[J]. Spectrosc. Spect. Anal., 2019, 39: 1776-1784.
|
12 |
DaggettV. Molecular dynamics simulations of the protein unfolding/folding reaction[J]. Acc. Chem. Res., 2002, 35: 422-429.
|
13 |
TretyakovaT, ShushanyanM, PartskhaladzeT, et al. Simplicity within the complexity: bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin[J]. Biophys. Chem., 2013, 175/176: 17-27.
|
14 |
KhanS H, PrakashA, PandeyP, et al. Protein folding: molecular dynamics simulations and in vitro studies for probing mechanism of urea- and guanidinium chloride induced unfolding of horse cytochrome-c[J]. Int. J. Biol. Macromol., 2019, 122: 695-704.
|
15 |
YamadaT, MitakuS, YamatoT. Characterization of mechanical unfolding intermediates of membrane proteins by coarse grained molecular dynamics simulation[J]. Chem. Phys. Lett., 2018, 691: 276-282.
|
16 |
CanchiD R, GarciaA E. Cosolvent effects on protein stability[J]. Annu. Rev. Phys. Chem., 2013, 64: 273-293.
|
17 |
廖晨伊, 周健. β发卡多肽Trpzip4折叠的副本交换分子动力学模拟[J]. 化学学报, 2013, 71: 593-601.
|
|
LiaoC Y, ZhouJ. Replica exchange molecular dynamics simulations on the folding of Trpzip4 β-hairpin[J]. Acta Chim. Sinica, 2013, 71: 593-601.
|
18 |
曹了然, 张春煜, 张鼎林, 等. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33: 1354-1365.
|
|
CaoL R, ZhangC Y, ZhangD L, et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules[J]. Acta Physico-Chimica Sinica, 2017, 33: 1354-1365.
|
19 |
RoccatanoD, WongT S, SchwanebergU, et al. Structural and dynamic properties of cytochrome P450 BM-3 in pure water and in a dimethylsulfoxide/water mixture[J]. Biopolymers, 2005, 78: 259-267.
|
20 |
LiJ H, ChenY, YangJ, et al. Thermal and urea induced unfolding processes of glutathione S-transferase by molecular dynamics simulation[J]. Biopolymers, 2015, 103: 247-259.
|
21 |
KhanP, PrakashA, HaqueM A, et al. Structural basis of urea-induced unfolding: unraveling the folding pathway of hemochromatosis factor E[J]. Int. J. Biol. Macromol., 2016, 91: 1051-1061.
|
22 |
沈洪辰, 丁吉勇, 李丽, 等. Y220C突变体影响p53C蛋白质构象转换的分子动力学模拟[J]. 物理化学学报, 2016, 32: 2620-2627.
|
|
ShenH C, DingJ Y, LiL, et al. Effect of Y220C mutant on the conformational transition of p53C probed by molecular dynamics simulation[J]. Acta Physico-Chimica Sinica, 2016, 32: 2620-2627.
|
23 |
卢滇楠, 闫明, 张敏莲, 等. 蛋白质-表面活性剂组装结构的分子模拟[J]. 化工学报, 2006, 57(8): 1949-1956.
|
|
LuD N, YanM, ZhangM L, et al. Molecular simulation of protein-surfactant assembly in aqueous solution[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(8): 1949-1956.
|
24 |
杨程, 卢滇楠, 张敏莲, 等. 分子动力学模拟二硫键对胰岛素构象稳定性的影响[J]. 化工学报, 2010, 61(4): 929-934.
|
|
YangC, LuD N, ZhangM L, et al. Molecular dynamics simulation of impact of disulfide bridge on conformational stability of insulin[J]. CIESC Journal, 2010, 61(4): 929-934.
|
25 |
潘晓莉, 李代禧, 魏冬青. 胰岛素活性结构在水合离子液体中的稳定性[J]. 化工学报, 2017, 68(5): 2035-2041.
|
|
PanX L, LiD X, WeiD Q. Bioactive structural stability of insulin in hydrated ionic liquids[J]. CIESC Journal, 2017, 68(5): 2035-2041.
|
26 |
HessB, KutznerC, van de SpoelD, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. J. Chem. Theory Comput., 2008, 4: 435-447.
|
27 |
赵渊中. 脱卤酶对芥子气的催化活性和稳定性研究[D]. 北京: 防化研究院, 2016.
|
|
ZhaoY Z. Study on the activity and stability of dehalogenase against sulfur mustard[D]. Beijing: Research Institute of Chemical Defense, 2016.
|
28 |
JurcikA, BednarD, ByskaJ, et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories[J]. Bioinfomatics, 2018, 34: 3586-3588.
|
29 |
AmreshP, GunjanD, NaveenK M, et al. Elucidation of stable intermediates in urea induced unfolding pathway of human carbonic anhydrase Ⅸ[J]. J. Biomol. Struct. Dtn., 2017, 36: 2391-2406.
|