化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4278-4288.DOI: 10.11949/0438-1157.20190468
收稿日期:
2019-05-06
修回日期:
2019-06-15
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
卢晗锋
作者简介:
席康(1996—),男,硕士研究生,基金资助:
Kang XI(),Yong WANG,Jing XIE,Ning WANG,Ying ZHOU,Qiulian ZHU,Hanfeng LU()
Received:
2019-05-06
Revised:
2019-06-15
Online:
2019-11-05
Published:
2019-11-05
Contact:
Hanfeng LU
摘要:
Pt与载体间的相互作用会影响到本征Pt纳米粒子的催化活性,不同Pt前体制备Pt/CeO2催化剂会使其表现出完全不同的催化性能。分别采用金属胶体粒子原位沉积法、浸渍法以及浸渍还原的方式制备了Pt/CeO2催化剂,通过X 射线衍射、程序升温还原、X射线光电子能谱以及高分辨透射电镜对催化剂进行表征,在CO氧化以及甲苯燃烧反应中评价催化剂活性。结果表明,胶体粒子原位沉积法制备Pt/CeO2催化剂,能够将优先合成好的Pt纳米粒子直接以金属态Pt0的形式负载到载体表面,且保证其高度均匀分散,丰富的表面Pt0很好地充当了CO、甲苯反应时的活化位点,催化剂表现出优异的性能;浸渍还原法中,Pt纳米粒子之间会发生团聚现象,同时部分Pt又以Pt2+的形式与CeO2之间形成了Pt-O-Ce相互作用,载体表面暴露Pt0含量的下降是催化剂表现出较弱活性的主要原因;浸渍法中,以Pt离子对Pt进行负载,Pt完全以Pt2+的形式参与到Pt-O-Ce键成键中,表面Pt0缺失,催化剂表现出明显的失活现象。Pt/CeO2催化剂中,起主要活性作用的是金属态Pt0,胶体粒子原位沉积法能够实现Pt0的直接负载,对于提高Pt基催化剂中Pt的利用率,降低Pt资源消耗都具有重要意义。
中图分类号:
席康, 王勇, 谢晶, 王宁, 周瑛, 朱秋莲, 卢晗锋. 不同Pt前体制备Pt/CeO2催化剂对其结构及性能的影响[J]. 化工学报, 2019, 70(11): 4278-4288.
Kang XI, Yong WANG, Jing XIE, Ning WANG, Ying ZHOU, Qiulian ZHU, Hanfeng LU. Effect of Pt precursor on structure and performance of Pt/CeO2 catalysts[J]. CIESC Journal, 2019, 70(11): 4278-4288.
Sample | S BET/(m2·g-1) | V pore/(cm3·g-1) | Average pore size/nm | Crystallite size/nm |
---|---|---|---|---|
CeO2 | 64.6 | 0.22 | 13.6 | 12.8 |
Pt/Ce-NPs | 63.1 | 0.20 | 13.6 | 12.1 |
Pt/Ce-IMP_R | 61.0 | 0.20 | 13.9 | 12.4 |
Pt/Ce-IMP | 63.4 | 0.20 | 13.6 | 11.4 |
表1 CeO2和Pt/CeO2催化剂的物理结构参数
Table 1 Textural parameters of CeO2 and Pt/CeO2 catalysts
Sample | S BET/(m2·g-1) | V pore/(cm3·g-1) | Average pore size/nm | Crystallite size/nm |
---|---|---|---|---|
CeO2 | 64.6 | 0.22 | 13.6 | 12.8 |
Pt/Ce-NPs | 63.1 | 0.20 | 13.6 | 12.1 |
Pt/Ce-IMP_R | 61.0 | 0.20 | 13.9 | 12.4 |
Pt/Ce-IMP | 63.4 | 0.20 | 13.6 | 11.4 |
Sample | (Pt0/Pt)/% | (Ce3+/(Ce3++Ce4+))/% | (Oβ/(Oα+Oβ))/% |
---|---|---|---|
Pt/Ce-NPs | 92.1 | 18.2 | 16.4 |
Pt/Ce-IMP_R | 36.8 | 19.0 | 18.6 |
Pt/Ce-IMP | 0 | 19.4 | 20.6 |
表2 Pt/CeO2催化剂的XPS表征结果
Table 2 XPS results of Pt/CeO2 catalysts
Sample | (Pt0/Pt)/% | (Ce3+/(Ce3++Ce4+))/% | (Oβ/(Oα+Oβ))/% |
---|---|---|---|
Pt/Ce-NPs | 92.1 | 18.2 | 16.4 |
Pt/Ce-IMP_R | 36.8 | 19.0 | 18.6 |
Pt/Ce-IMP | 0 | 19.4 | 20.6 |
Sample | Peak position/℃ | H2 consumption/(μmol·g-1) |
---|---|---|
CeO2 | 360,510 | 321 |
Pt/Ce-NPs | 150 | 84 |
Pt/Ce-IMP_R | 330 | 335 |
Pt/Ce-IMP | 330 | 401 |
表3 CeO2和Pt/CeO2催化剂的耗氢量计算结果
Table 3 H2 consumption data of CeO2 and Pt/CeO2 samples
Sample | Peak position/℃ | H2 consumption/(μmol·g-1) |
---|---|---|
CeO2 | 360,510 | 321 |
Pt/Ce-NPs | 150 | 84 |
Pt/Ce-IMP_R | 330 | 335 |
Pt/Ce-IMP | 330 | 401 |
Reaction | Sample | Catalytic activity | ||
---|---|---|---|---|
T 10%/℃ | T 90%/℃ | ΔT/℃① | ||
CO oxidation | Pt/Ce-NPs | 110 | 130 | 20 |
Pt/Ce-IMP_R | 140 | 180 | 40 | |
Pt/Ce-IMP | 200 | 300 | 100 | |
toluene combustion | Pt/Ce-NPs | 160 | 210 | 50 |
Pt/Ce-IMP_R | 180 | 235 | 55 | |
Pt/Ce-IMP | 210 | 300 | 90 |
表4 Pt/CeO2催化剂的活性数据统计结果
Table 4 Catalytic performances for various Pt/CeO2 catalysts
Reaction | Sample | Catalytic activity | ||
---|---|---|---|---|
T 10%/℃ | T 90%/℃ | ΔT/℃① | ||
CO oxidation | Pt/Ce-NPs | 110 | 130 | 20 |
Pt/Ce-IMP_R | 140 | 180 | 40 | |
Pt/Ce-IMP | 200 | 300 | 100 | |
toluene combustion | Pt/Ce-NPs | 160 | 210 | 50 |
Pt/Ce-IMP_R | 180 | 235 | 55 | |
Pt/Ce-IMP | 210 | 300 | 90 |
1 | Ma Y , Chen M , Song C , et al . Catalytic oxidation of toluene, acetone and ethyl acetate on a new Pt-Pd/stainless steel wire mesh catalyst[J]. Acta Physico-Chimica Sinica, 2008, 24: 1132-1136. |
2 | Zheng C H , Shen J L , Zhang Y X , et al . Quantitative assessment of industrial VOC emissions in China: historical trend, spatial distribution, uncertainties, and projection[J]. Atmospheric Environment, 2017, 150: 116-125. |
3 | Li M , Liu H , Geng G N , et al . Anthropogenic emission inventories in China: a review[J]. National Science Review, 2017, 4: 834-866. |
4 | Gentner D R , Harley R A , Miller A M , et al . Diurnal and seasonal variability of gasoline-related volatile organic compound emissions in Riverside, California[J]. Environmental Science & Technology, 2009, 43: 4247-4252. |
5 | Li W B , Chu W B , Zhuang A , et al . Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions[J]. Catalysis Today, 2004, 93/94/95: 205-209. |
6 | Xiao L H , Sun K P , Xu X L , et al . Catalytic combustion of methane over CeO2-MO x (M=La3+, Ca2+) solid solution promoted Pd/gamma-Al2O3 catalysts[J]. Acta Physico-Chimica Sinica, 2008, 24: 2108-2113. |
7 | Aguero F N , Barbero B P , Gambaro L , et al . Catalytic combustion of volatile organic compounds in binary mixtures over MnO x /Al2O3 catalyst[J]. Applied Catalysis B-Environmental, 2009, 91: 108-112. |
8 | Morales M R , Barbero B P , Cadus L E . Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Applied Catalysis B-Environmental, 2006, 67: 229-236. |
9 | Grbic B , Radic N , Terlecki-Baricevic A . Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts- oxidation of mixture[J]. Applied Catalysis B-Environmental, 2004, 50: 161-166. |
10 | Li N , Chen Q Y , Luo M F , et al . Kinetics study of CO oxidation reaction over Pt/TiO2 catalysts[J]. Acta Physico-Chimica Sinica, 2013, 29: 1055-1062. |
11 | Shen M Q , Lv L F , Wang J Q , et al . Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction[J]. Chemical Engineering Journal, 2014, 255: 40-48. |
12 | Chen X , Zhao Z L , Zhou Y , et al . A facile route for spraying preparation of Pt/TiO2 monolithic catalysts toward VOCs combustion[J]. Applied Catalysis A-General, 2018, 566: 190-199. |
13 | Liu H H , Wang Y , Jia A P , et al . Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: a reaction at Pt-CeO2 interface[J]. Applied Surface Science, 2014, 314: 725-734. |
14 | Cui H Z , Yao J L , Ben L I , et al . Study on performance of low loading Pt/γ-AlOOH for VOCs catalytic combustion[J]. Modern Chemical Industry, 2017, 37: 93-97, 99. |
15 | Xie X J , Chen W K , Sun B Z , et al . Adsorption behavior of NO on Cu3Pt(111) surface[J]. Acta Physico-Chimica Sinica, 2010, 26: 3047-3051. |
16 | Becker E , Carlsson P A , Skoglundh M . Methane oxidation over alumina and ceria supported platinum[J]. Topics in Catalysis, 2009, 52: 1957-1961. |
17 | Oran U , Uner D . Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/gamma-Al2O3 catalysts[J]. Applied Catalysis B-Environmental, 2004, 54:183-191. |
18 | Peng R S , Sun X B , Li S J , et al . Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chemical Engineering Journal, 2016, 306: 1234-1246. |
19 | Zhou J F , Zhao M , Peng N , et al . Performance effect of Pt/MO x -SiO2 (M=Ce, Zr, Al) catalysts for CO and C3H8 oxidation[J]. Acta Physico-Chimica Sinica, 2012, 28: 1448-1454. |
20 | Meher S K , Cargnello M , Troiani H , et al . Alcohol induced ultra-fine dispersion of Pt on tuned morphologies of CeO2 for CO oxidation[J]. Applied Catalysis B-Environmental, 2013, 130: 121-131. |
21 | Gao Y X , Wang W D , Chang S J , et al . Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts[J]. Chemcatchem, 2013, 5: 3610-3620. |
22 | Wu X Q , Zong R L , Zhu Y F . Enhanced MnO2 nanorods to CO and volatile organic compounds oxidative activity by platinum nanoparticles[J]. Acta Physico-Chimica Sinica, 2012, 28: 437-444. |
23 | Cargnello M , Doan-Nguyen V V T , Gordon T R , et al . Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts[J]. Science, 2013, 341: 771-773. |
24 | Feng L , Hoang D T , Tsung C K , et al . Catalytic properties of Pt cluster-decorated CeO2 nanostructures[J]. Nano Research, 2011, 4: 61-71. |
25 | Liu H L , Lei M , Shao S B , et al . Preferential CO oxidation on Ce-promoted Pt/gamma-Al2O3 catalysts under H2-rich atmosphere[J]. Chinese Journal of Catalysis, 2007, 28: 1077-1082. |
26 | Jung S , Suzuki A , Tsuboi H , et al . An elucidation of the interaction between Pt particles and CeO2 surfaces using tight-binding quantum chemistry method[J]. Topics in Catalysis, 2010, 53: 700-706. |
27 | Lee J , Ryou Y S , Chan X J , et al . How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2 [J]. Journal of Physical Chemistry C, 2016, 120: 25870-25879. |
28 | Maache R , Brahmi R , Pirault-Roy L , et al . Oxygen storage capacity of Pt-CeO2 and Pt-Ce0.5Zr0.5O2 catalysts[J]. Topics in Catalysis, 2013, 56: 658-661. |
29 | Nagai Y , Hirabayashi T , Dohmae K , et al . Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction[J]. Journal of Catalysis, 2006, 242: 103-109. |
30 | Hatanaka M , Takahashi N , Takahashi N , et al . Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt[J]. Journal of Catalysis, 2009, 266: 182-190. |
31 | Jin J H , Li C , Tsang C W , et al . Catalytic combustion of methane over Pt-Ce oxides under scarce oxygen condition[J]. Industrial & Engineering Chemistry Research, 2016, 55: 2293-2301. |
32 | Royer S , Duprez D . Catalytic oxidation of carbon monoxide over transition metal oxides[J]. ChemCatChem, 2011, 3: 24-65. |
33 | Hinokuma S , Okamoto M , Ando E , et al . Structure and CO oxidation activity of Pt/CeO2 catalysts prepared using arc-plasma[J]. Bulletin of the Chemical Society of Japan, 2012, 85: 144-149. |
34 | Zheng B , Liu G , Geng L L , et al . Role of the FeO x support in constructing high-performance Pt/FeO x catalysts for low-temperature CO oxidation[J]. Catalysis Science & Technology, 2016, 6: 1546-1554. |
35 | Zhou A B , Wang J , Wang H , et al . Effect of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation[J]. Journal of Rare Earths, 2018, 36: 257-264. |
36 | Ding K , Gulec A , Johnson A M , et al . Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts[J]. Science, 2015, 350: 189-192. |
37 | Huang H , Dai Q G , Wang X Y . Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B-Environmental, 2014, 158: 96-105. |
38 | Peng R S , Li S J , Sun X B , et al . Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B-Environmental, 2018, 220: 462-470. |
39 | Bera P , Gayen A , Hegde M S , et al . Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation[J]. Journal of Physical Chemistry B, 2003, 107: 6122-6130. |
40 | Damyanova S , Pawelec B , Arishtirova K , et al . The effect of CeO2 on the surface and catalytic properties of Pt/CeO2-ZrO2 catalysts for methane dry reforming[J]. Applied Catalysis B-Environmental, 2009, 89: 149-159. |
41 | Wang Z , Wang Q , Liao Y C , et al . Comparative study of CeO2 and doped CeO2 with tailored oxygen vacancies for CO oxidation[J]. Chemphyschem, 2011, 12: 2763-2770. |
42 | Pfau A , Schierbaum K D . The electronic-structure of stoichiometric and reduced CeO2 surfaces-an XPS, UPS and HREELS study[J]. Surface Science, 1994, 321: 71-80. |
43 | Xiao W D , Guo Q L , Wang E G . Transformation of CeO2(111) to Ce2O3(0001) films[J]. Chemical Physics Letters, 2003, 368: 527-531. |
44 | Vayssilov G N , Lykhach Y , Migani A , et al . Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles[J]. Nature Materials, 2011, 10: 310-315. |
45 | Manuel L J , Gilbank A L , Garcia T , et al . The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation[J]. Applied Catalysis B-Environmental, 2015, 174: 403-412. |
46 | Zhou B , Xi K , Fan L J , et al . A comparative study on Ce-Pr and Ce-Mn mixed oxide catalysts toward soot catalytic combustion[J]. Applied Catalysis A-General, 2018, 562: 1-10. |
47 | Reyes P , Pecchi G , Morales M , et al . The nature of the support and the metal precursor on the resistance to sulphur poisoning of Pt supported catalysts[J]. Applied Catalysis A-General, 1997, 163: 145-152. |
48 | Zhu H Y , Wu Z L , Su D , et al . Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation[J]. Journal of the American Chemical Society, 2015, 137: 10156-10159. |
49 | Chen C Y , Zhu J , Chen F , et al . Enhanced performance in catalytic combustion of toluene over mesoporous beta zeolite-supported platinum catalyst[J]. Applied Catalysis B-Environmental, 2013, 140: 199-205. |
50 | Liu K , Wang A Q , Zhang T . Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts[J]. ACS Catalysis, 2012, 2: 1165-1178. |
[1] | 于海斌, 刘强, 周立坤, 陈赞, 罗超, 张贯艳, 乔利娜, 王建杰. MnO x /ZrO2 催化剂制备及催化臭氧氧化降解甲基橙[J]. 化工学报, 2019, 70(4): 1436-1445. |
[2] | 朱丽, 邓芸, 宋宇鹏, 王月娟, 鲁继青, 罗孟飞. MnOx对Pt/CeZrO2催化剂在水汽和CO2环境下CO氧化的影响[J]. 化工学报, 2018, 69(4): 1484-1492. |
[3] | 张络明, 许春芳, 马通, 巩雁军. La改性ZSM-5分子筛及其在催化裂解反应中的应用[J]. 化工学报, 2016, 67(8): 3408-3414. |
[4] | 王喜兵, 纪拓, 李力成, 杨祝红, 陆小华. Au/TiO2-B催化剂的CO低温氧化性能[J]. 化工学报, 2014, 65(5): 1636-1643. |
[5] | 陈绍云, 张永春, 王新平. 过渡金属盐改性HZSM-5氧化吸附深度脱除CO2中的NO[J]. 化工学报, 2012, 63(11): 3700-3706. |
[6] | 王青宁, 张正才, 谢振萍, 吴应琴, 李澜, 焦林宏. 凹凸棒黏土脱硫剂脱除RFCC汽油中的硫醇和硫醚[J]. 化工学报, 2012, 63(1): 292-300. |
[7] | 刘晓娟, 黄碧纯, 付名利, 叶代启, 梁红. La0.8K0.2Mn0.95Cu0.05O3在含SO2气氛下氧化模拟炭烟的性能 [J]. 化工学报, 2010, 61(3): 704-711. |
[8] | 黄海凤, 张峰, 卢晗锋, 陈银飞. 制备方法对低温NH3-SCR脱硝催化剂MnOx/TiO2结构与性能的影响 [J]. 化工学报, 2010, 61(1): 80-85. |
[9] | 魏作君, 李艳, 李斐瑾, 陈传杰, 刘迎新, 任其龙. 固定化Bronsted酸性离子液体催化酯化反应 [J]. 化工学报, 2009, 60(6): 1452-1458. |
[10] | 孙晓君,刘 楠,张密林,刘晓慧,刘 慧. 前体浸渍法制备含铜的介孔材料Cu/MSU-s [J]. CIESC Journal, 2008, 27(6): 944-. |
[11] | 叶炳火, 江莉龙, 魏可镁, 林诚. Ni-Cu-Mn-K/γ-Al2O3高温变换催化剂的制备和还原条件 [J]. 化工学报, 2007, 58(6): 1445-1450. |
[12] | 鲁继青;罗孟飞;辛 勤. 纳米金催化剂在CO低温氧化和选择性氧化中的研究进展 [J]. CIESC Journal, 2007, 26(3): 306-. |
[13] | 杨小毛;罗来涛;钟华. La2-xSrxCoO4±λ(x=0~1.0)催化剂的结构及催化性能 [J]. CIESC Journal, 2004, 55(11): 1799-1802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||