化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4289-4297.DOI: 10.11949/0438-1157.20190424
收稿日期:
2019-04-24
修回日期:
2019-08-12
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
刘熠斌
作者简介:
安志远(1993—),男,硕士研究生,基金资助:
Zhiyuan AN(),Chao ZHU,Yibin LIU(),Xiang FENG,Xin JIN,Xiaobo CHEN,Chaohe YANG
Received:
2019-04-24
Revised:
2019-08-12
Online:
2019-11-05
Published:
2019-11-05
Contact:
Yibin LIU
摘要:
HZSM-5分子筛可用于脂肪酸酯催化转化生产芳烃、低碳烯烃等过程。未经过处理的HZSM-5分子筛芳烃产率较低,使用过渡金属改性后的HZSM-5分子筛酸性质发生了改变,能够提高芳烃的收率。以等体积浸渍法对HZSM-5分子筛进行改性,制备了不同锌含量的 Zn/HZSM-5分子筛,并进行了 XRD、XRF、XPS、NH3-TPD、SEM、TEM、Py-IR、N2物理吸附-脱附等多种表征,结果表明锌的引入没有改变 HZSM-5的晶体结构,锌物种能均匀分布在 HZSM-5分子筛表面及孔道。棕榈油催化转化实验结果显示Zn含量(质量分数)为3% 的 Zn/HZSM-5有最好的催化效果,芳烃在液相烃类所占比例(质量分数)为87.92%,芳烃收率(质量分数)为59.44%。
中图分类号:
安志远, 朱超, 刘熠斌, 冯翔, 金鑫, 陈小博, 杨朝合. Zn/HZSM-5分子筛催化棕榈油多产芳烃的研究[J]. 化工学报, 2019, 70(11): 4289-4297.
Zhiyuan AN, Chao ZHU, Yibin LIU, Xiang FENG, Xin JIN, Xiaobo CHEN, Chaohe YANG. Catalytic conversion of palm oil to aromatics on Zn/HZSM-5 zeolites[J]. CIESC Journal, 2019, 70(11): 4289-4297.
性质 | 数值 |
---|---|
密度(25℃)/(g·cm-3) | 0.88 |
黏度(40℃)/(mPa·s) | 35.41 |
元素组成(质量分数)/% | |
C | 75.65 |
H | 12.28 |
O(减差法计算) | 15.07 |
N | <0.1 |
S | <0.1 |
主要脂肪酸(质量分数)/% | |
油酸(C18:1) | 38.8 |
亚油酸(C18:2) | 10.1 |
棕榈酸(C16:0) | 43.5 |
硬脂酸(C18:0) | 4.2 |
表1 棕榈油的性质
Table 1 Properties of palm oil
性质 | 数值 |
---|---|
密度(25℃)/(g·cm-3) | 0.88 |
黏度(40℃)/(mPa·s) | 35.41 |
元素组成(质量分数)/% | |
C | 75.65 |
H | 12.28 |
O(减差法计算) | 15.07 |
N | <0.1 |
S | <0.1 |
主要脂肪酸(质量分数)/% | |
油酸(C18:1) | 38.8 |
亚油酸(C18:2) | 10.1 |
棕榈酸(C16:0) | 43.5 |
硬脂酸(C18:0) | 4.2 |
分子筛 | 酸量/( mmol·g-1) | Strong/Weak | L/B | ||||
---|---|---|---|---|---|---|---|
Total | Strong | Weak | B | L | |||
1-Z5 | 1.25 | 0.64 | 0.61 | 0.87 | 0.38 | 1.05 | 0.44 |
2-Z5 | 1.06 | 0.47 | 0.59 | 0.45 | 0.61 | 0.8 | 1.34 |
3-Z5 | 1.01 | 0.33 | 0.68 | 0.29 | 0.72 | 0.48 | 2.52 |
4-Z5 | 0.95 | 0.18 | 0.77 | 0.15 | 0.80 | 0.24 | 5.3 |
表2 HZSM-5及Zn/HZSM-5酸性质分析
Table 2 Analysis of acid properties of HZSM-5 and Zn/HZSM-5 zeolites
分子筛 | 酸量/( mmol·g-1) | Strong/Weak | L/B | ||||
---|---|---|---|---|---|---|---|
Total | Strong | Weak | B | L | |||
1-Z5 | 1.25 | 0.64 | 0.61 | 0.87 | 0.38 | 1.05 | 0.44 |
2-Z5 | 1.06 | 0.47 | 0.59 | 0.45 | 0.61 | 0.8 | 1.34 |
3-Z5 | 1.01 | 0.33 | 0.68 | 0.29 | 0.72 | 0.48 | 2.52 |
4-Z5 | 0.95 | 0.18 | 0.77 | 0.15 | 0.80 | 0.24 | 5.3 |
催化剂 | A BET/ (m2·g-1) | A micro/ (m2·g-1) | V total/ (cm3·g-1) | V micro/ (cm3·g-1) | d aver/nm |
---|---|---|---|---|---|
1-Z5 | 396 | 385 | 0.18 | 0.16 | 1.85 |
2-Z5 | 385 | 372 | 0.18 | 0.16 | 1.87 |
3-Z5 | 368 | 353 | 0.17 | 0.15 | 1.90 |
4-Z5 | 342 | 325 | 0.16 | 0.14 | 1.89 |
表3 HZSM-5及Zn/HZSM-5的表面积和孔结构分析
Table 3 Surface area and pore structure of HZSM-5 and Zn/HZSM-5 zeolites
催化剂 | A BET/ (m2·g-1) | A micro/ (m2·g-1) | V total/ (cm3·g-1) | V micro/ (cm3·g-1) | d aver/nm |
---|---|---|---|---|---|
1-Z5 | 396 | 385 | 0.18 | 0.16 | 1.85 |
2-Z5 | 385 | 372 | 0.18 | 0.16 | 1.87 |
3-Z5 | 368 | 353 | 0.17 | 0.15 | 1.90 |
4-Z5 | 342 | 325 | 0.16 | 0.14 | 1.89 |
催化剂 | 液相烃类收率/% | 气体收率/% | 积炭/% | H2O/% | 液相烃类产物中芳烃含量/% | 芳烃收率/% |
---|---|---|---|---|---|---|
1-Z5 | 57.01 | 32.41 | 3.84 | 0.031 | 91.41 | 52.10 |
2-Z5 | 60.54 | 28.33 | 3.68 | 0.029 | 92.57 | 56.04 |
3-Z5 | 67.60 | 23.49 | 2.40 | 0.032 | 87.92 | 59.44 |
4-Z5 | 65.07 | 24.58 | 2.63 | 0.030 | 86.91 | 56.55 |
表4 500℃下棕榈油在HZSM-5及Zn/HZSM-5上的催化产物性质
Table 4 Catalytic product properties of palm oil on HZSM-5 and Zn/HZSM-5 at 500℃
催化剂 | 液相烃类收率/% | 气体收率/% | 积炭/% | H2O/% | 液相烃类产物中芳烃含量/% | 芳烃收率/% |
---|---|---|---|---|---|---|
1-Z5 | 57.01 | 32.41 | 3.84 | 0.031 | 91.41 | 52.10 |
2-Z5 | 60.54 | 28.33 | 3.68 | 0.029 | 92.57 | 56.04 |
3-Z5 | 67.60 | 23.49 | 2.40 | 0.032 | 87.92 | 59.44 |
4-Z5 | 65.07 | 24.58 | 2.63 | 0.030 | 86.91 | 56.55 |
1 | 刘全杰, 方向晨, 徐会青, 等 . 含分子筛重整催化剂的反应性能研究[J]. 工业催化, 2009, 17(12): 37-40. |
Liu Q J , Fang X C , Xu H Q , al et .Study on catalytic properties of reforming catalysts containing zeolite[J]. Industrial Catalysis, 2009, 17(12): 37-40. | |
2 | 孔德金, 杨为民 . 芳烃生产技术进展[J]. 化工进展, 2011, 30(1): 16-25. |
Kong D J , Yang W M . Advance in technology for production of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 16-25. | |
3 | 李燕秋, 白尔铮, 段启伟 . 芳烃生产技术的新进展[J]. 石油化工, 2005, 34(4): 309-315. |
Li Y Q , Bai E Z , Duan Q W . Recent progress of aromatics production technologies[J]. Petrochemical Technology, 2005, 34(4): 309-315. | |
4 | 童浩 . 离子液体萃取分离芳烃/脂肪烃的研究[D]. 北京: 中国石油大学 (北京), 2016. |
Tong H . Separation of aromatic and aliphatic hydrocarborn by ionic liquids[D]. Beijing: China University of Petroleum, 2016. | |
5 | 张岚, 吴平 . 能源结构低碳转型路线图[J]. 高科技与产业化, 2010, 6(9): 49-51. |
Zhang L , Wu P . Low-carbon energy structure transformation roadmap[J]. High-Technology & Industrialization, 2010, 6(9): 49-51. | |
6 | 夏亚穆, 焦斌 . 非均相催化法生产生物柴油的研究进展[J]. 化学与生物工程, 2012, 29(3): 6-8. |
Xia Y M , Jiao B . Research progress of biodiesel production by heterogeneous catalysis[J]. Chemistry & Bioengineering, 2012, 29(3): 6-8. | |
7 | Kokotailo G T , Lawton S L , Olson D H . Structure of synthetic zeolite ZSM-5[J]. Nature, 1978, 272(5652): 437-438. |
8 | 蔡文静, 闫昊, 冯翔, 等 . 不同碳链长度脂肪酸甲酯的催化裂化产物分布规律[J]. 化工学报, 2016, 68(5): 2057-2065. |
Cai W J , Yan H , Feng X , et al . Product distribution in catalytic cracking of fatty acid methyl esters with different carbon chain lengths[J]. CIESC Journal, 2016, 68(5): 2057-2065. | |
9 | Kim Y H , Lee K H , Nam C M , et al . Formation of hierarchical pore structures in Zn/ZSM‐5 to improve the catalyst stability in the aromatization of branched olefins[J]. ChemCatChem, 2012, 4(8): 1143-1153. |
10 | Prasad Y S , Bakhshi N N , Mathews J F , et al . Catalytic conversion of canola oil to fuels and chemical feedstocks(Ⅱ): Effect of co‐feeding steam on the performance of HZSM‐5 catalyst[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 285-292. |
11 | Ngo T A , Kim J , Kim S K , et al . Pyrolysis of soybean oil with H-ZSM5 (Proton-exchange of Zeolite Socony Mobil# 5) and MCM41 (Mobil Composition of Matter No. 41) catalysts in a fixed-bed reactor[J]. Energy, 2010, 35(6): 2723-2728. |
12 | Twaiq F A , Zabidi N A M , Bhatia S . Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3230-3237. |
13 | Hilten R , Speir R , Kastner J , et al . Production of aromatic green gasoline additives via catalytic pyrolysis of acidulated peanut oil soap stock[J]. Bioresource Technology, 2011, 102(17): 8288-8294. |
14 | Botas J A , Serrano D P , García A , et al . Catalytic conversion of rapeseed oil into raw chemicals and fuels over Ni- and Mo-modified nanocrystalline ZSM-5 zeolite[J]. Catalysis Today, 2012, 195(1): 59-70. |
15 | Bayat A . Enhanced performance of methyl ester to renewable aromatics via thermocatalytic conversion over metal‐modified HZSM‐5 zeolites: an experimental study[J]. ChemistrySelect, 2018, 3(47): 13338-13344. |
16 | Zhao X , Wei L , Cheng S , et al . Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst[J]. Fuel Processing Technology, 2015, 139: 117-126 |
17 | Ramos R , García A , Botas J A , et al . Enhanced production of aromatic hydrocarbons by rapeseed oil conversion over Ga and Zn modified ZSM-5 catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(50): 12723-12732. |
18 | Danuthai T , Jongpatiwut S , Rirksomboon T , et al . Conversion of methylesters to hydrocarbons over Zn-modified H-ZSM-5 zeolite catalyst[J]. Catalysis Letters, 2009, 132(1/2): 197-204. |
19 | Roshanaei A , Alavi S M . Using two-zone fluidized bed reactor in propane aromatization over Zn/HZSM-5 catalyst[J]. Fuel Processing Technology, 2018, 176: 197-204. |
20 | Pinilla-Herrero I , Borfecchia E , Holzinger J , et al . High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics[J]. Journal of Catalysis, 2018, 362: 146-163. |
21 | He P , Wang A , Meng S , et al . Impact of Al sites on the methane co-aromatization with alkanes over Zn/HZSM-5[J]. Catalysis Today, 2019, 323: 94-104. |
22 | Wei Z , Chen L , Cao Q , et al . Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability[J]. Fuel Processing Technology, 2017, 162: 66-77. |
23 | Ramya G , Sudhakar R , Joice J A I , et al . Liquid hydrocarbon fuels from jatropha oil through catalytic cracking technology using AlMCM-41/ZSM-5 composite catalysts[J]. Applied Catalysis A: General, 2012, 433: 170-178. |
24 | Taufiqurrahmi N , Bhatia S . Catalytic cracking of edible and non-edible oils for the production of biofuels[J]. Energy & Environmental Science, 2011, 4(4): 1087-1112. |
25 | Rahimi N , Karimzadeh R . Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17. |
26 | Choudhary V R , Jana S K . Benzylation of benzene by benzyl chloride over Fe-, Zn-, Ga- and In-modified ZSM-5 type zeolite catalysts[J]. Applied Catalysis A: General, 2002, 224(1/2): 51-62. |
27 | Chen L , Li H , Fu J , et al . Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst[J]. Catalysis Today, 2016, 259: 266-276. |
28 | Sang S , Chang F , Liu Z , et al . Difference of ZSM-5 zeolites synthesized with various templates[J]. Catalysis Today, 2004, 93: 729-734. |
29 | 龙化云 . 全馏分FCC汽油改质芳构化催化剂研究[D]. 大连: 大连理工大学, 2012. |
Long H Y . Study on the aromatization catalyst for full-range FCC gasoline upgrading[D]. Dalian: Dalian University of Technology, 2012. | |
30 | Chen X , Dong M , Niu X , et al . Influence of Zn species in HZSM-5 on ethylene aromatization[J]. Chinese Journal of Catalysis, 2015, 36(6): 880-888. |
31 | Berndt H , Lietz G , Völter J . Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics(Ⅱ): Nature of the active sites and their activation[J]. Applied Catalysis A: General, 1996, 146(2): 365-379. |
32 | Triwahyono S , Jalil A A , Mukti R R , et al . Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane[J]. Applied Catalysis A General, 2011, 407(1): 91-99. |
33 | Su X , Zan W , Bai X , et al . Synthesis of microscale and nanoscale ZSM-5 zeolites: effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance[J]. Catalysis Science & Technology, 2017, 7(9): 1943-1952. |
34 | Cao R , Zhao H , Cheng M J , et al . Synergistic mechanism of aromatization of ethane and ethene over Zn/HZSM-5 zeolite[J]. Chemical Research in Chinese Universities, 1996, 17(1): 102-106. |
35 | 辛勤, 罗孟飞 . 现代催化研究方法[M]. 北京: 科学出版社, 2009: 21. |
Xin Q , Luo M F . Modern Catalytic Research Method[M]. Beijing: Science Press, 2009: 21. | |
36 | Yang C , Qiu M , Hu S , et al . Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2016, 231: 110-116. |
37 | Wang F , Xiao W , Gao L , et al . The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol[J]. Catalysis Science & Technology, 2016, 6(9): 3074-3086. |
38 | Lin B , Wang J , Huang Q , et al . Aromatic recovery from distillate oil of oily sludge through catalytic pyrolysis over Zn modified HZSM-5 zeolites[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 291-303. |
39 | 何学良, 詹永厚, 李疏松 . 内燃机燃料[M]. 北京: 中国石化出版社, 1999: 395-430. |
He X L , Zhan Y H , Li S S . Automotive Fuels[M]. Beijing: China Petrochemical Press, 1999: 395-430. | |
40 | 田华, 李春义, 杨朝合, 等 . 棕榈油的催化转化研究[J]. 石油学报 (石油加工), 2008, 24(3): 256-262. |
Tian H , Li C Y , Yang C H , et al . Study on catalytic conversion of palm oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(3): 256-262. | |
41 | Chen N Y . Shape Selective Catalysis in Industrial Applications[M]. Florida: Chemical Rubber Company Press, 1996: 30-31 |
42 | Li Y , Liu S , Xie S , et al . Promoted metal utilization capacity of alkali-treated zeolite: preparation of Zn/ZSM-5 and its application in 1-hexene aromatization[J]. Applied Catalysis A: General, 2009, 360(1): 8-16. |
43 | Idem R O , Katikaneni S P R , Bakhshi N N . Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution[J]. Fuel Processing Technology, 1997, 51(1/2): 101-125. |
44 | Zhang C , Kwak G , Park H G , et al . Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5: effects of alkali treatment on catalytic performance[J]. Microporous and Mesoporous Materials, 2019, 276: 292-301. |
[1] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[2] | 许雄飞, 刘鹏龙, 张玮, 许鑫, 张侃, 王俊文. 两段法固定床甲醇制芳烃产物预测多元非线性回归模型[J]. 化工学报, 2022, 73(2): 838-846. |
[3] | 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711. |
[4] | 贝鹏志, 李文英. 能量分解前提下萃取剂的选择策略[J]. 化工学报, 2022, 73(2): 739-746. |
[5] | 杨珍, 曹景沛, 朱陈, 刘天龙, 赵小燕. B-ZSM-5酸调控及催化褐煤热解挥发分制轻质芳烃研究[J]. 化工学报, 2021, 72(11): 5633-5642. |
[6] | 任雪宇, 曹景沛, 姚乃瑜, 赵小燕, 冯晓博, 刘天龙, 赵云鹏. 模板法调控多级孔ZSM-5催化褐煤挥发分制备轻质芳烃的研究[J]. 化工学报, 2021, 72(11): 5620-5632. |
[7] | 朱林, 韩威, 李文松, 邬长城, 李芳, 薛伟, 王延吉. [BMIm]Br离子液体辅助HZSM-5催化乙酸环己酯高选择性水解反应[J]. 化工学报, 2020, 71(4): 1609-1617. |
[8] | 谢雨珩, 李智, 杨明磊, 杜文莉. 基于自适应采样算法的芳烃异构化代理模型[J]. 化工学报, 2020, 71(2): 688-697. |
[9] | 马会霞,周峰,武光,傅杰,乔凯. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报, 2020, 71(11): 5200-5207. |
[10] | 梁斌, 白浩隆, 冯强, 宋华, 蓝天, 刘新华. 民用燃煤颗粒物及多环芳烃排放特性[J]. 化工学报, 2019, 70(8): 2888-2897. |
[11] | 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822. |
[12] | 朱勇晨, 李小华, 张小雷, 胡超, 董文斌, 程静峰, 邵珊珊. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803. |
[13] | 马香成, 秦蔚, 陈清林, 张冰剑. 芳烃分子描述符的修正和沸点预测建模[J]. 化工学报, 2019, 70(11): 4306-4314. |
[14] | 吴小平, 王晨光, 张琦, 刘琪英, 张兴华, 马隆龙. PtSn-Mg(Zn)AlO催化剂应用于乙烷脱氢反应研究[J]. 化工学报, 2019, 70(11): 4268-4277. |
[15] | 胡艳军, 余帆, 陈江, 于文静, 卢艳军. 污泥热解过程中多环芳烃排放规律[J]. 化工学报, 2018, 69(8): 3662-3669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||