化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1432-1439.DOI: 10.11949/0438-1157.20191023

• 热力学 • 上一篇    下一篇

基于EKF和UKF算法非均匀介质热物性参数重建

文爽1,2(),齐宏1,2(),刘少斌1,2,任亚涛1,2,阮立明1,2   

  1. 1.哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
    2.工业和信息化部航空航天热物理重点实验室,黑龙江 哈尔滨 150001
  • 收稿日期:2019-09-09 修回日期:2020-01-08 出版日期:2020-04-05 发布日期:2020-04-05
  • 通讯作者: 齐宏
  • 作者简介:文爽(1993—),男,博士,wenshuang123456@126.com
  • 基金资助:
    国家科技重大专项(2017-V-0016);国家自然科学基金青年基金(51806047)

Reconstruction of thermophysical parameters in inhomogeneous media using extended Kalman filter and unscented Kalman filter

Shuang WEN1,2(),Hong QI1,2(),Shaobin LIU1,2,Yatao REN1,2,Liming RUAN1,2   

  1. 1.School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    2.Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, Heilongjiang, China
  • Received:2019-09-09 Revised:2020-01-08 Online:2020-04-05 Published:2020-04-05
  • Contact: Hong QI

摘要:

将无迹卡尔曼滤波技术(unscented Kalman filter, UKF)用于求解一维介质热物性参数反演问题;也对利用扩展卡尔曼滤波技术(extended Kalman filter, EKF)反演一维介质中热导率问题进行了研究。首先给出了正问题模型,然后详细介绍了EKF算法和UKF算法的基本原理。最后为了验证当前算法的可行性,采用UKF算法重建了介质内部随位置变化的热导率,并采用EKF算法重建了介质内部随时间变化的热导率。计算结果表明,UKF算法和EKF算法均能较为准确地反演介质的热导率。为了减小重建结果的时间滞后,建议使用较小的测量误差协方差R

关键词: 扩展卡尔曼滤波, 无迹卡尔曼滤波, 导热反问题, 热导率

Abstract:

In this paper, the unscented Kalman filter (UKF) is used for the first time to solve the inverse problem of one-dimensional dielectric thermophysical properties. In addition, this paper also studies the inversion of thermal conductivity in one-dimensional media using extended Kalman filter (EKF). The forward model is introduced firstly. Basic principles of the EKF and UKF technique are also introduced in detail. In order to examine the feasibility of the proposed algorithms, the space-dependent and time-dependent thermal conductivities in media are reconstructed by the UKF and EKF techniques, respectively. All the reconstruction results indicate that thermal conductivities of media can be retrieved effectively by the EKF and UKF techniques. Moreover, the small measurement error covariance R should be selected to decrease the time lag of the reconstructed results.

Key words: extended Kalman filter, unscented Kalman filter, inverse heat conduction problem, thermal conductivities

中图分类号: