化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1424-1431.DOI: 10.11949/0438-1157.20190994
收稿日期:
2019-09-02
修回日期:
2019-12-26
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
刘明
作者简介:
刘明(1976—),男,高级工程师,基金资助:
Received:
2019-09-02
Revised:
2019-12-26
Online:
2020-04-05
Published:
2020-04-05
Contact:
Ming LIU
摘要:
采用平衡分子动力学方法模拟了甲烷水合物的导热,给出了30~150 K甲烷水合物的热导率。采用量子修正对分子模拟结果进行处理,可以得到更接近实验值的结果。当模拟温度低于德拜温度时,量子效应对分子模拟结果的影响较大。通过对热流自相关函数拟合得到了声学声子和光学声子的弛豫时间。结果显示,声子弛豫时间随温度增加逐渐减小,声学声子导热在水合物的导热中比重最大。随着碳氧原子之间相互作用力的增加,碳氧原子之间振动的耦合程度增加,甲烷水合物的热导率增加。
中图分类号:
刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431.
Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate[J]. CIESC Journal, 2020, 71(4): 1424-1431.
T/K | τsh,ac/ps | τint,ac/ps | τlg,ac/ps | τsh,opt/ps | τlg,opt/ps | ω/ (rad·s-1) |
---|---|---|---|---|---|---|
30 | 0.411 | 4.95 | 0.0546 | 0.968 | 172.45 | |
50 | 0.2 | 2.33 | 0.0539 | 0.685 | 171.82 | |
75 | 0.142 | 2.17 | 0.0521 | 0.570 | 168.68 | |
100 | 0.133 | 1.83 | 0.0492 | 0.1836 | 166.79 | |
150 | 0.0446 | 0.467 | 1.25 | 0.0479 | 0.1616 | 163.01 |
表1 声子弛豫时间和光学模式峰值频率
Table 1 Phonon relaxation time and peak frequency of optical modeontribution to thermal conductivity
T/K | τsh,ac/ps | τint,ac/ps | τlg,ac/ps | τsh,opt/ps | τlg,opt/ps | ω/ (rad·s-1) |
---|---|---|---|---|---|---|
30 | 0.411 | 4.95 | 0.0546 | 0.968 | 172.45 | |
50 | 0.2 | 2.33 | 0.0539 | 0.685 | 171.82 | |
75 | 0.142 | 2.17 | 0.0521 | 0.570 | 168.68 | |
100 | 0.133 | 1.83 | 0.0492 | 0.1836 | 166.79 | |
150 | 0.0446 | 0.467 | 1.25 | 0.0479 | 0.1616 | 163.01 |
系数 | k/(W·m-1·K-1) | kww/(W·m-1·K-1) | kmm/( W·m-1·K-1) | kwm/(W·m-1·K-1) |
---|---|---|---|---|
1 | 0.72 | 0.66 | 0.007 | 0.058 |
2 | 0.74 | 0.67 | 0.010 | 0.062 |
3 | 0.77 | 0.69 | 0.015 | 0.066 |
4 | 0.79 | 0.70 | 0.023 | 0.072 |
表2 不同作用力强度下甲烷水合物的热导率
Table 2 Heat conductivity of methane hydrate with various strengths
系数 | k/(W·m-1·K-1) | kww/(W·m-1·K-1) | kmm/( W·m-1·K-1) | kwm/(W·m-1·K-1) |
---|---|---|---|---|
1 | 0.72 | 0.66 | 0.007 | 0.058 |
2 | 0.74 | 0.67 | 0.010 | 0.062 |
3 | 0.77 | 0.69 | 0.015 | 0.066 |
4 | 0.79 | 0.70 | 0.023 | 0.072 |
1 | Waite W F, Stern L A, Kirby S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. Geophys. J. Int., 2007, 169(2): 767-774. |
2 | Takeya S, Kida M, Minami H, et al. Structure and thermal expansion of natural gas clathrate hydrate[J]. Chem. Eng. Sci., 2006, 61: 2670-2674. |
3 | English N J, Macelroy J M D. Structural and dynamical properties of methane clathrate hydrates[J]. J. Comput. Chem., 2003, 24: 1569-1581. |
4 | 万丽华, 梁德青, 吴能友, 等. 客体分子数对甲烷水合物导热性能影响的分子动力学模拟[J]. 化工学报, 2012, 63(2): 382-386. |
Wan L H, Liang D Q, Wu N Y, et al. Molecular dynamics simulation on influence of guest molecule number on methane hydrate thermal performance[J]. CIESC Journal, 2012, 63(2): 382-386. | |
5 | 周广刚, 孙晓亮, 卢贵武. 温度对甲烷水合物分解影响的分子动力学模拟[J]. 人工晶体学报, 2017, 46(8): 1608-1613. |
Zhou G G, Sun X L, Lu G W. Molecular dynamics simulation of temperature effect on methane hydrate decomposition[J]. Journal of Synthetic Crystals, 2017, 46(8): 1608-1613. | |
6 | Inoue R, Tanaka H, Nakanishi K. Molecular dynamics simulation study of the anomalous thermal conductivity of clathrate hydrates[J]. Chem. Phys., 1996, 104(23): 9569-9577. |
7 | Schober H, Itoh H, Klapproth A, et al. Guest-host coupling and anharmonicity in clathrate hydrates[J]. Eur. Phys. J. E, 2003, 12(1): 41-49. |
8 | Ning F, Glavatskiy K, Ji Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations[J]. Phys. Chem. Chem. Phys., 2014, 17(4): 2869-2883. |
9 | Chialvo A A, Houssa M, Cummings P T. Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates[J]. J. Phys. Chem. B, 2002, 106(2): 442-451. |
10 | Rosenbaum E J, English N J, Johnson J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. J. Phys. Chem. B, 2007, 111(46): 13194-13205. |
11 | Jiang H, Myshakin E M, Jordan K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate[J]. J. Phys. Chem. B, 2008, 112(33): 10207-10216. |
12 | Jiang H, Jordan K D. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations[J]. J. Phys. Chem. C, 2009, 114(12): 5555-5564. |
13 | Krivchikov A I, Gorodilov B Y, Korolyuk O A, et al. Thermal conductivity of Xe clathrate hydrate at low temperatures [J]. Phys. Rev. B, 2006, 73: 064203. |
14 | Tse J S, White M A. Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate[J]. J. Phys. Chem., 1988, 92(17): 5006-5011. |
15 | Koza M M, Johnson M R, Viennois R, et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites[J]. Nat. Mater., 2008, 7(10): 805-810. |
16 | English N J, John S T, Carey D J. Mechanisms for thermal conduction in various polymorphs of methane hydrate[J]. Phys. Rev. B, 2009, 80(13): 134306. |
17 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19. |
18 | Bugel M, Galliero G. Thermal conductivity of the Lennard-Jones fluid: an empirical correlation[J]. Chem. Phys., 2008, 352(1): 249-257. |
19 | Luty B A, van Gunsteren W F. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions[J]. J. Phys. Chem., 1996, 100(7): 2581-2587. |
20 | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. J. Chem. Phys., 1995, 103(19): 8577-8593. |
21 | Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. J. Chem. Phys., 1984, 81(1): 511-519. |
22 | Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Phys. Rev. A, 1985, 31(3): 1695-1697. |
23 | Lukes J R, Zhong H. Thermal conductivity of individual single-wall carbon nanotubes[J]. J. Heat Transfer, 2007, 129(6): 705-716. |
24 | Krivchikov A I, Gorodilov B Y, Korolyuk O A, et al. Thermal conductivity of methane-hydrate[J]. J. Low Temp. Phys., 2005, 139(5/6): 693-702. |
25 | 姚贵策, 苑昆鹏, 吴硕, 等. 独立探头3ω法表征甲烷水合物热导率和热扩散率[J]. 化工学报, 2016, 67(5): 1665-1672. |
Yao G C, Yuan K P, Wu S, et al. Characterizing of thermal conductivity and thermal diffusivity of methane hydrate by free-standing sensor 3ω method[J]. CIESC Journal, 2016, 67(5): 1665-1672. | |
26 | Cook J G, Leaist D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophys. Res. Lett., 1983, 10(5): 397-399. |
27 | Ladd A J C, Moran B, Hoover W G. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics[J]. Phys. Rev. B, 1986, 34(8): 5058-5064. |
28 | McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations(Part Ⅰ): Lennard-Jones argon [J]. Int. J. Heat Mass Transfer, 2004, 47(8): 1783-1798. |
29 | McGaughey A J H, Kaviany M. Thermal conductivity decomposition and analysis using molecular dynamics simulations(Part Ⅱ): Complex silica structures[J]. Int. J. Heat Mass Transfer, 2004, 47(8): 1799-1816. |
30 | English N J, Tse J S. Mechanisms for thermal conduction in methane hydrate[J]. Phys. Rev. Lett., 2009, 103: 015901. |
31 | Greathouse J A, Cygan R T, Simmons B A. Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation[J]. J. Phys. Chem. B, 2006, 110(13): 6428-6431. |
32 | Wang Z L, Yuan K P, Tang D W. Thermal transport in methane hydrate by molecular dynamics and phonon inelastic scattering[J]. Chin. Phys. Lett., 2015, 32(10): 104401. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[4] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[5] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[6] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[7] | 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843. |
[8] | 石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269. |
[9] | 徐欢, 柯律, 张生辉, 张子林, 韩广东, 崔金声, 唐道远, 黄东辉, 高杰峰, 何新建. GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J]. 化工学报, 2022, 73(11): 5150-5157. |
[10] | 胡慧慧, 杨亮, 刘道平, 张柯. 低剂量超吸水树脂溶液微滴中甲烷水合物生成动力学[J]. 化工学报, 2022, 73(10): 4659-4667. |
[11] | 梁恒, 刘益才, 汪谦旭, 赵祥乐, 李政. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20. |
[12] | 杨振, 姚元鹏, 吴慧英. 基于导热形状因子的泡沫金属导热特性分析[J]. 化工学报, 2021, 72(3): 1295-1301. |
[13] | 裴俊华, 杨亮, 汪鑫, 胡晗, 刘道平. 泡沫铜强化甲烷水合物生成动力学实验研究[J]. 化工学报, 2021, 72(11): 5751-5760. |
[14] | 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226. |
[15] | 石彦, 赵君文, 袁艳平, 戴光泽, 韩靖. Cu含量对Al-Cu-Si合金相变储热性能的影响[J]. 化工学报, 2020, 71(5): 2017-2023. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||