化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1047-1058.DOI: 10.11949/0438-1157.20200559
彭肖祎(),董轩,廖祖维(
),杨遥,孙婧元,蒋斌波,王靖岱,阳永荣
收稿日期:
2020-05-10
修回日期:
2020-06-11
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
廖祖维
作者简介:
彭肖祎(1994—),女,硕士研究生,基金资助:
PENG Xiaoyi(),DONG Xuan,LIAO Zuwei(
),YANG Yao,SUN Jingyuan,JIANG Binbo,WANG Jingdai,YANG Yongrong
Received:
2020-05-10
Revised:
2020-06-11
Online:
2021-02-05
Published:
2021-02-05
Contact:
LIAO Zuwei
摘要:
将数学规划法与图形方法相结合探究单杂质用水网络与换热网络的集成问题。首先构建混合整数非线性规划模型(MINLP),在最小公用工程消耗下优化流股参数未知情况下的分离系统组合曲线面积,得到了最为节能、换热面积最小的用水网络结构。在此基础上,提出了新的分离系统组合曲线演化步骤和规则,可以得到换热单元数目较小的换热网络结构。算例表明,与现有的基于分离系统的热集成用水网络设计方法相比,在最小化公用工程用量的同时可以进一步降低换热器数目与总换热面积。
中图分类号:
彭肖祎, 董轩, 廖祖维, 杨遥, 孙婧元, 蒋斌波, 王靖岱, 阳永荣. 数学规划与图形方法相结合设计热集成用水网络[J]. 化工学报, 2021, 72(2): 1047-1058.
PENG Xiaoyi, DONG Xuan, LIAO Zuwei, YANG Yao, SUN Jingyuan, JIANG Binbo, WANG Jingdai, YANG Yongrong. Optimal design of heat integrated water allocation networks combining mathematical programming with graphical tools[J]. CIESC Journal, 2021, 72(2): 1047-1058.
用水单元 | 最大入口 浓度/ppm | 最大出口 浓度/ppm | 操作温度/℃ | 极限流率/ (kg/s) | 移除杂质 负荷/(g/s) |
---|---|---|---|---|---|
1 | 0 | 100 | 40 | 20 | 2 |
2 | 50 | 100 | 100 | 100 | 5 |
3 | 50 | 800 | 75 | 40 | 30 |
4 | 400 | 800 | 50 | 10 | 4 |
表1 四用水单元的数据
Table 1 Water-using operation data
用水单元 | 最大入口 浓度/ppm | 最大出口 浓度/ppm | 操作温度/℃ | 极限流率/ (kg/s) | 移除杂质 负荷/(g/s) |
---|---|---|---|---|---|
1 | 0 | 100 | 40 | 20 | 2 |
2 | 50 | 100 | 100 | 100 | 5 |
3 | 50 | 800 | 75 | 40 | 30 |
4 | 400 | 800 | 50 | 10 | 4 |
图 | 换热量/kW | 换热面积/m2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | H | 换热量总和 | S1 | S2 | S3 | SH | 换热面积总和 | |
3569.9 | 7097.8 | 7560 | 3780 | 22007.7 | 524.6 | 1419.6 | 1512 | 269.6 | 3725.8 | |
3570 | 630.4 | 14027.4 | 3780 | 22007.7 | 524.6 | 120.7 | 3221.1 | 269.6 | 4136 |
表2 图6(e)和图6(f)的结果对比
Table 2 Design comparison of Fig.6(e) and Fig.6(f)
图 | 换热量/kW | 换热面积/m2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | H | 换热量总和 | S1 | S2 | S3 | SH | 换热面积总和 | |
3569.9 | 7097.8 | 7560 | 3780 | 22007.7 | 524.6 | 1419.6 | 1512 | 269.6 | 3725.8 | |
3570 | 630.4 | 14027.4 | 3780 | 22007.7 | 524.6 | 120.7 | 3221.1 | 269.6 | 4136 |
文献 | 新鲜水用量/( kg/s) | 换热器个数 | 公用工程用量/ kW | 换热量/kW | 总换热面积/ m2 |
---|---|---|---|---|---|
[ | 90 | 4 | 3780 | 22008.0 | 3915.2 |
[ | 90 | 4 | 3780 | 22260.0 | 3775.4 |
本文[ | 90 | 4 | 3780 | 22007.7 | 3725.8 |
表3 本文与文献的设计结果对比
Table 3 Overall design comparison
文献 | 新鲜水用量/( kg/s) | 换热器个数 | 公用工程用量/ kW | 换热量/kW | 总换热面积/ m2 |
---|---|---|---|---|---|
[ | 90 | 4 | 3780 | 22008.0 | 3915.2 |
[ | 90 | 4 | 3780 | 22260.0 | 3775.4 |
本文[ | 90 | 4 | 3780 | 22007.7 | 3725.8 |
换热匹配个数 | 换热单元个数 | 总换热面积/m2 | 总换热量/kW |
---|---|---|---|
1 | 2 | 6024.6 | 22007.7 |
2 | 3 | 4420.0 | 22007.7 |
3 | 4 | 3725.8 | 22007.7 |
4 | 5 | 3596.3 | 22007.7 |
表4 四种换热匹配的设计结果对比
Table 4 Comparison of four design results
换热匹配个数 | 换热单元个数 | 总换热面积/m2 | 总换热量/kW |
---|---|---|---|
1 | 2 | 6024.6 | 22007.7 |
2 | 3 | 4420.0 | 22007.7 |
3 | 4 | 3725.8 | 22007.7 |
4 | 5 | 3596.3 | 22007.7 |
1 | Zhou L, Liao Z, Wang J, et al. Simultaneous optimization of heat-integrated water allocation networks using the mathematical model with equilibrium constraints strategy[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3355-3366. |
2 | 郭孝正, 刘琳琳, 张磊, 等. 基于截断器半连续操作的间歇过程性质集成[J]. 化工学报, 2019, 70(2): 516-524. |
Guo X Z, Liu L L, Zhang L, et al. Property integration of batch process based on interceptors in semi-continuous operation[J]. CIESC Journal, 2019, 70(2): 516-524. | |
3 | Ahmetović E, Ibrić N, Kravanja Z, et al. Water and energy integration: a comprehensive literature review of non-isothermal water network synthesis[J]. Computers & Chemical Engineering, 2015, 82(2): 144-171. |
4 | Onishi V C, Quirante N, Ravagnani M A S S, et al. Optimal synthesis of work and heat exchangers networks considering unclassified process streams at sub and above-ambient conditions[J]. Applied Energy, 2018, 224: 567-581. |
5 | 阮真真, 孙力, 李保红. 单杂质用水网络集成对能量集成影响规律探索[J]. 化工进展, 2011, 30(S2): 182-185. |
Ruan Z Z, Sun L, Li B H. Study on the effect of water-using network on energy intergration with a single contaminant[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 182-185. | |
6 | Bagajewicz M, Savelski M. On the use of linear models for the design of water utilization systems in process plants with a single contaminant[J]. Chemical Engineering Research and Design, 2001, 79(5): 600-610. |
7 | Prakash R, Shenoy U V. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations[J]. Chemical Engineering Science, 2005, 60(1): 255-268. |
8 | Chen C, Liao H, Jia X, et al. Synthesis of heat-integrated water-using networks in process plants[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(4): 512-521. |
9 | Kamat S, Bandyopadhyay S. Synthesis of heat-integrated water allocation networks through pinch analysis[J]. Process Integration and Optimization for Sustainability, 2019, 3(4): 515-531. |
10 | Chang C T, Li B H. Improved optimization strategies for generating practical water-usage and -treatment network structures [J]. Industrial & Engineering Chemistry Research, 2005, 44(10): 3607-3618. |
11 | Bagajewicz M. A review of recent design procedures for water networks in refineries and process plants[J]. Computers & Chemical Engineering, 2000, 24(9/10): 2093-2113. |
12 | Bagajewicz M, Rodera H, Savelski M. Energy efficient water utilization systems in process plants[J]. Computers & Chemical Engineering, 2002, 26(1): 59-79. |
13 | Wang Y P, Smith R. Wastewater minimisation[J]. Chemical Engineering Science, 1994, 49(7): 981-1006. |
14 | Olesen S G, Polley G T. A simple methodology for the design of water networks handling single contaminants[J]. Chemical Engineering Research and Design, 1997, 75(4): 420-426. |
15 | 罗祎青, 刘乔乔, 袁希钢. 混合顺序对热集成水网络的能耗影响[J]. 化工学报, 2013, 64: 140-146. |
Luo Y Q, Liu Q Q, Yuan X G. Effect of mixing sequence on heat-integrated water network's energy performance[J]. CIESC Journal, 2013, 64: 140-146. | |
16 | Luo Y, Liu Z, Luo S, et al. Thermodynamic analysis of non-isothermal mixing's influence on the energy target of water-using networks[J]. Computers & Chemical Engineering, 2014, 61: 1-8. |
17 | Du J, Meng X, Du H, et al. Optimal design of water utilization network with energy integration in process industries[J]. Chinese Journal of Chemical Engineering, 2004, 12(2): 247-255. |
18 | 都健, 李秀峰, 陈理, 等. 超结构法分步综合热集成的质量交换网络[J]. 化工学报, 2010, 61(10): 2636-2643. |
Du J, Li X F, Chen L, et al. Synthesis of heat integrated mass exchanger networks using step-wise approach based on superstructure[J]. CIESC Journal, 2010, 61(10): 2636-2643. | |
19 | 廖祖维, 阳永荣, 王靖岱, 等. 考虑热集成的用水网络优化[J]. 化工学报, 2007, 58(2): 396-402. |
Liao Z W, Yang Y R, Wang J D, et al. Optimization of energy efficient water utilization systems[J]. CIESC Journal, 2007, 58(2): 396-402. | |
20 | Liao Z, Wu J, Jiang B, et al. Design energy efficient water utilization systems allowing operation split[J]. Chinese Journal of Chemical Engineering, 2008, 16(1): 16-20. |
21 | Zhou R, Li L, Dong H, et al. Synthesis of interplant water-allocation and heat-exchange networks. Part 1: Fixed flow rate processes[J]. Industrial and Engineering Chemistry Research, 2012, 51(11): 4299-4312. |
22 | Liao Z, Rong G, Wang J, et al. Systematic optimization of heat-integrated water allocation networks[J]. Industrial and Engineering Chemistry Research, 2011, 50(11): 6713-6727. |
23 | Yan F, Wu H, Li W, et al. Simultaneous optimization of heat-integrated water networks by a nonlinear program[J]. Chemical Engineering Science, 2016, 140: 76-89. |
24 | Ahmetović E, Kravanja Z. Simultaneous synthesis of process water and heat exchanger networks[J]. Energy, 2013, 57: 236-250. |
25 | 刘祖明, 罗祎青, 袁希钢. 考虑非等温混合的能量集成用水网络综合[J]. 化工学报, 2014, 65(1): 285-291. |
Liu Z M, Luo Y Q, Yuan X G. Synthesis of heat-integrated water allocation network considering non-isothermal mixing[J]. CIESC Journal, 2014, 65(1): 285-291. | |
26 | Hong X, Liao Z, Jiang B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173: 537-559. |
27 | Hong X, Liao Z, Sun J, et al. Energy and water management for industrial large-scale water networks: a systematic simultaneous optimization approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2269-2282. |
28 | Lee J Y, Chen C L, Lin C Y, et al. A two-stage approach for the synthesis of inter-plant water networks involving continuous and batch units[J]. Chemical Engineering Research and Design, 2014, 92(5): 941-953. |
29 | Rubio-Castro E, Ponce-Ortega J M J M P Y C, Serna-González M, et al. Optimal reconfiguration of multi-plant water networks into an eco-industrial park[J]. Computers & Chemical Engineering, 2012, 44: 58-83. |
30 | Liu L, Song H, Zhang L, et al. Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design[J]. Computers & Chemical Engineering, 2018, 108: 408-424. |
31 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
32 | Varbanov P, Perry S, Klemeš J, et al. Synthesis of industrial utility systems: cost-effective de-carbonisation[J]. Applied Thermal Engineering, 2005, 25(7): 985-1001. |
33 | Savulescu L. Simultaneous energy and water minimisation[D]. Manchester: University of Manchester, 1999. |
34 | Savulescu L, Kim J K, Smith R. Studies on simultaneous energy and water minimisation—Part II: Systems with maximum re-use of water[J]. Chemical Engineering Science, 2005, 60(12): 3291-3308. |
35 | Leewongtanawit B, Kim J K. Improving energy recovery for water minimisation[J]. Energy, 2009, 34(7): 880-893. |
36 | Savulescu L, Sorin M, Smith R. Direct and indirect heat transfer in water network systems[J]. Applied Thermal Engineering, 2002, 22(8): 981-988. |
37 | wan Alwi S R Ismail A, Manan Z A, et al. A new graphical approach for simultaneous mass and energy minimisation[J]. Applied Thermal Engineering, 2011, 31(6/7): 1021-1030. |
38 | Martínez-Patiño J, Picón-Núñez M, Serra L M, et al. Design of water and energy networks using temperature-concentration diagrams[J]. Energy, 2011, 36(6): 3888-3896. |
39 | Manan Z A, Tea S Y, Alwi S R W. A new technique for simultaneous water and energy minimisation in process plant[J]. Chemical Engineering Research and Design, 2009, 87(11): 1509-1519. |
40 | Feng X, Yucai L I, Xinjiang Y U. Improving energy performance of water allocation networks through appropriate stream merging[J]. Chinese Journal of Chemical Engineering, 2008, 16(3): 480-484. |
41 | Feng X, Li Y, Shen R. A new approach to design energy efficient water allocation networks[J]. Applied Thermal Engineering, 2009, 29(11/12): 2302-2307. |
42 | Liao Z, Hong X, Jiang B, et al. Novel graphical tool for the design of the heat integrated water allocation networks[J]. AIChE Journal, 2016, 62(3): 670-686. |
43 | Hong X, Liao Z, Sun J, et al. Heat transfer blocks diagram: a novel tool for targeting and design of heat exchanger networks inside heat integrated water allocation networks[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2704-2715. |
44 | Hong X, Liao Z, Sun J, et al. New insights into T-H/H-F diagrams for synthesis of heat exchanger networks inside heat integrated water allocation networks[J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9323-9328. |
45 | Chin H H, Foo D C Y, Lam H L. Simultaneous water and energy integration with isothermal and non-isothermal mixing - A P-graph approach[J]. Resources, Conservation and Recycling, 2019, 149: 687-713. |
46 | Ahmetović E, Kravanja Z. Simultaneous optimization of heat-integrated water networks involving process-to-process streams for heat integration[J]. Applied Thermal Engineering, 2014, 62(1): 302-317. |
47 | Duran M A, Grossmann I E. Simultaneous optimization and heat integration of chemical processes[J]. AIChE Journal, 1986, 32(1): 123-138. |
[1] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[2] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[3] | 王东亮, 谢江鹏, 周怀荣, 孟文亮, 杨勇, 李德磊. 基于MDEA的烟气SO2捕集过程工艺参数和能量集成分析[J]. 化工学报, 2021, 72(3): 1521-1528. |
[4] | 刘宏, 赵雅静, 李英栋, 李凭力. 新型复合式内部能量集成的精馏塔的机械设计与水力学模拟[J]. 化工学报, 2020, 71(5): 1995-2003. |
[5] | 杨蕊, 庄钰, 邸楠茜, 都健. 基于超结构法的热集成间接式功交换网络综合[J]. 化工学报, 2019, 70(12): 4689-4697. |
[6] | 黄旭, 罗祎青, 袁希钢. 带共沸的乙醇/乙酸乙酯/2-丁酮三元物系变压精馏分离过程及其参数优化[J]. 化工学报, 2018, 69(5): 2089-2099. |
[7] | 董轩, 彭肖祎, 廖祖维, 孙婧元, 蒋斌波, 王靖岱, 阳永荣. 基于能级总组合曲线的化工过程功-热公用工程设置[J]. 化工学报, 2018, 69(11): 4823-4831. |
[8] | 刘雪刚, 何畅, 雷杨, 何昌春, 张冰剑, 陈清林. 基于塔总组合曲线的内部热耦合精馏塔优化设计方法[J]. 化工学报, 2017, 68(4): 1482-1489. |
[9] | 曹健, 牟鹏, 耿志强, 朱群雄. 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801-810. |
[10] | 姜楠, 刘永忠, 朱天鸿. 换热网络合成问题的并行BB/SQP混合算法[J]. 化工学报, 2016, 67(12): 5169-5175. |
[11] | 叶梦晴, 解新安, 李璐, 李雁. 基于矩阵编码的遗传算法多杂质间歇用水网络优化[J]. 化工学报, 2015, 66(5): 1838-1843. |
[12] | 杨彩玲, 刘琳琳, 都健. 考虑环境及处理单元流股回用的多性质用水网络集成[J]. 化工学报, 2015, 66(12): 4916-4921. |
[13] | 吴敏,肖武,贺高红. 综合考虑泵的设备及运行费用的换热网络优化[J]. 化工进展, 2014, 33(03): 599-604. |
[14] | 梁肇铭, 李雁, 解新安. 基于经验规则的数学规划法快速设计多杂质用水网络[J]. 化工学报, 2013, 64(7): 2535-2542. |
[15] | 游夏竹, 杜文莉, 赵亮, 李泽秋, 钱锋. 乙烯装置蒸汽管网用能配置与实时优化[J]. 化工学报, 2013, 64(2): 641-648. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||