化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2999-3009.DOI: 10.11949/0438-1157.20230519
李贵贤(), 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣()
收稿日期:
2023-05-29
修回日期:
2023-07-12
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
周怀荣
作者简介:
李贵贤(1966—),男,博士,教授,lgxwyf@163.com
基金资助:
Guixian LI(), Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU()
Received:
2023-05-29
Revised:
2023-07-12
Online:
2023-07-05
Published:
2023-08-31
Contact:
Huairong ZHOU
摘要:
利用CO2耦合可再生能源电解水制氢合成高能量密度甲醇产品,不仅可以降低CO2的排放,而且可以提高间歇性和波动性的可再生能源的就地消纳能力。提出了一种耦合固体氧化物电解槽(SOEC)的CO2制甲醇新工艺(SOEC-CO2tM),该工艺包括SOEC制氢、烟气CO2捕集和甲醇合成及精制单元。基于工艺全流程模拟数据,进行热集成设计与优化,采用能效、投资、生产成本等对新工艺进行技术经济评价,并与传统煤制甲醇工艺和绿氢耦合煤制甲醇工艺对比分析。结果表明:能量集成前,工艺能耗为420.05 MW,能量集成后,工艺能耗为254.88 MW,能耗降低了39.32%。SOEC-CO2tM新工艺的能量利用效率为62.94%,与绿氢耦合煤制甲醇工艺能效相当,是传统煤制甲醇工艺的1.46倍。新工艺的单位甲醇总资本投资为2964.68 CNY/t,生产成本为3742 CNY/t,电价占生产成本的64.7%。未来随着可再生能源的大力发展,新工艺的经济性能将凸显优势。每年可以消纳200万吨CO2,可再生电力1245 MW。传统煤制甲醇工艺单位产品二氧化碳排放量为2.66 t/t。相比传统煤制甲醇工艺,新工艺在碳减排和可再生能源就地消纳方面具有明显的优势。
中图分类号:
李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009.
Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009.
流股 | 温度/℃ | 压力/MPa | 摩尔流量/ (kmol/h) | 摩尔分数/% | 质量流量/(kg/h) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2O | O2 | H2 | CO2 | N2 | CO | CH3OH | |||||
1 | 25 | 0.1 | 18933 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 341089 |
2 | 40 | 0.1 | 17040 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 34350 |
3 | 42 | 0.13 | 40000 | 4.2 | 3.3 | 0 | 14.6 | 77.9 | 0 | 0 | 1202421 |
4 | 40 | 0.1 | 5232 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 230265 |
5 | 250 | 5 | 182948 | 0.04 | 0 | 93.22 | 5.59 | 0 | 0.93 | 0.22 | 855749 |
6 | 250 | 5 | 172636 | 3.04 | 0 | 89.82 | 2.93 | 0 | 1 | 3.21 | 855749 |
7 | 80.9 | 0.13 | 10323 | 50.1 | 0 | 0 | 0 | 0 | 0 | 49.9 | 258250 |
8 | 64.7 | 0.1 | 5138 | 0.12 | 0 | 0 | 0 | 0 | 0 | 99.88 | 164558 |
表1 SOEC耦合CO2制甲醇工艺关键物流模拟结果
Table 1 Simulation results at key points of the SOEC-CO2tM process
流股 | 温度/℃ | 压力/MPa | 摩尔流量/ (kmol/h) | 摩尔分数/% | 质量流量/(kg/h) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2O | O2 | H2 | CO2 | N2 | CO | CH3OH | |||||
1 | 25 | 0.1 | 18933 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 341089 |
2 | 40 | 0.1 | 17040 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 34350 |
3 | 42 | 0.13 | 40000 | 4.2 | 3.3 | 0 | 14.6 | 77.9 | 0 | 0 | 1202421 |
4 | 40 | 0.1 | 5232 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 230265 |
5 | 250 | 5 | 182948 | 0.04 | 0 | 93.22 | 5.59 | 0 | 0.93 | 0.22 | 855749 |
6 | 250 | 5 | 172636 | 3.04 | 0 | 89.82 | 2.93 | 0 | 1 | 3.21 | 855749 |
7 | 80.9 | 0.13 | 10323 | 50.1 | 0 | 0 | 0 | 0 | 0 | 49.9 | 258250 |
8 | 64.7 | 0.1 | 5138 | 0.12 | 0 | 0 | 0 | 0 | 0 | 99.88 | 164558 |
单元 | 基准 | Sref | sf | EI |
---|---|---|---|---|
SOEC | H2产量 | 1000 m3/h(标准工况) | 0.60 | 11.0 |
CC | CO2产量 | 62.26 t/h | 0.67 | 87.14 |
MS | 合成气进料量 | 10.81 kmol/s | 0.67 | 142.8 |
MD | 甲醇进料量 | 3.66 kg/s | 0.67 | 12.04 |
表2 主要单元设备投资数据汇总
Table 2 Summary of investment data for main equipment components
单元 | 基准 | Sref | sf | EI |
---|---|---|---|---|
SOEC | H2产量 | 1000 m3/h(标准工况) | 0.60 | 11.0 |
CC | CO2产量 | 62.26 t/h | 0.67 | 87.14 |
MS | 合成气进料量 | 10.81 kmol/s | 0.67 | 142.8 |
MD | 甲醇进料量 | 3.66 kg/s | 0.67 | 12.04 |
1 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
Zou C N, Li J M, Zhang X, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
2 | Yang Q C, Li X F, Yang Q, et al. Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
3 | Chen Q Q, Lv M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620. |
4 | Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866. |
5 | 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179. |
Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets[J]. Natural Gas Industry, 2022, 42(4): 156-179. | |
6 | 赵雪莹, 李根蒂, 孙晓彤, 等. “双碳”目标下电解制氢关键技术及其应用进展[J]. 全球能源互联网, 2021, 4(5): 436-446. |
Zhao X Y, Li G D, Sun X T, et al. Key technology and application progress of hydrogen production by electrolysis under peaking carbon dioxide emissions and carbon neutrality targets[J]. Journal of Global Energy Interconnection, 2021, 4(5): 436-446. | |
7 | 张玉魁, 陈换军, 孙振新, 等. 高温固体氧化物电解水制氢效率与经济性[J]. 广东化工, 2021, 48(18): 3-6, 24. |
Zhang Y K, Chen H J, Sun Z X, et al. Efficiency and economy of hydrogen production by electrolysis of water with high temperature solid oxide[J]. Guangdong Chemical Industry, 2021, 48(18): 3-6, 24. | |
8 | 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217. |
Zhang C J, Cai J, Zhang Y K, et al. Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 210-217. | |
9 | Andika R, Nandiyanto A B D, Putra Z A, et al. Co-electrolysis for power-to-methanol applications[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 227-241. |
10 | Rivera-Tinoco R, Farran M, Bouallou C, et al. Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction[J]. International Journal of Hydrogen Energy, 2016, 41(8): 4546-4559. |
11 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
12 | Wang D L, Meng W L, Zhou H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970. |
13 | 孟文亮, 李贵贤, 周怀荣, 等. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
Meng W L, Li G X, Zhou H R, et al. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen[J]. CIESC Journal, 2022, 73(4): 1714-1723. | |
14 | 杨庆春, 杨庆, 张金亮, 等. 耦合SOEC的煤制乙二醇新工艺开发与系统评价[J]. 化工进展, 2021, 40(11): 6061-6070. |
Yang Q C, Yang Q, Zhang J L, et al. Development and system assessment of a coal-to-ethylene glycol process coupled with SOEC[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6061-6070. | |
15 | Yang Q, Chu G Y, Yang Q C, et al. Process development and technoeconomic analysis of different integration methods of coal-to-ethylene glycol process and solid oxide electrolysis cells[J]. Industrial & Engineering Chemistry Research, 2021, 60(40): 14519-14533. |
16 | Zhang H F, Wang L G, van Herle J, et al. Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer[J]. Applied Energy, 2020, 270: 115113. |
17 | Zhang W D, Jin X H, Tu W W, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
18 | 季东, 王健, 王可, 等. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575. |
Ji D, Wang J, Wang K, et al. Study on CO2 coupling green hydrogen to methanol with different CO2 capture technologies[J]. CIESC Journal, 2022, 73(10): 4565-4575. | |
19 | 张婷, 魏顺安, 申威峰. 双效精馏分离不同浓度甲醇水溶液的节能分析[J]. 化工进展, 2019, 38(S1): 52-58. |
Zhang T, Wei S A, Shen W F. Energy-saving investigation of separation for methanol-water with different feed compositions through double-effect distillation[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 52-58. | |
20 | Wang D L, Li J W, Meng W L, et al. Integrated process for producing glycolic acid from carbon dioxide capture coupling green hydrogen[J]. Processes, 2022, 10(8): 1610. |
21 | Wang D L, Li J W, Meng W L, et al. A near-zero carbon emission methanol production through CO2 hydrogenation integrated with renewable hydrogen: process analysis, modification and evaluation[J]. Journal of Cleaner Production, 2023, 412: 137388. |
22 | Zhang H F, Desideri U. Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers[J]. Energy, 2020, 199: 117498. |
23 | Zhou H R, Wang J, Meng W L, et al. Comparative investigation of CO2-to-methanol process using different CO2 capture technologies[J]. Fuel, 2023, 338: 127359. |
24 | Zhang J P, Li Z W, Zhang Z H, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070. |
25 | Chen J J, Qian Y, Yang S Y. Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5229-5239. |
26 | Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54. |
27 | Askmar J, Carbol J. Carbon dioxide capture using phase changing solvents: a comparison with state-of-the-art MEA technologies[D]. Gothenburg: Chalmers University of Technology, 2017. |
28 | He C, Feng X A. Evaluation indicators for energy-chemical systems with multi-feed and multi-product[J]. Energy, 2012, 43(1): 344-354. |
29 | Yang Q C, Chu G Y, Zhang L H, et al. Pathways toward carbon-neutral coal to ethylene glycol processes by integrating with different renewable energy-based hydrogen production technologies[J]. Energy Conversion and Management, 2022, 258: 115529. |
30 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
31 | Xiang D, Li P, Yuan X Y, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. |
32 | Harris K, Grim R G, Huang Z, et al. A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: opportunities and barriers to commercialization[J]. Applied Energy, 2021, 303: 117637. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[3] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[4] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[5] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[6] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[7] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[8] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[9] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
[10] | 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
[11] | 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
[12] | 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672. |
[13] | 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269. |
[14] | 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245. |
[15] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||