化工学报 ›› 2021, Vol. 72 ›› Issue (1): 1-13.DOI: 10.11949/0438-1157.20201047
收稿日期:
2020-07-29
修回日期:
2020-08-18
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
樊江莉
作者简介:
杨宇鑫(1999—),女,硕士研究生,基金资助:
YANG Yuxin1(),ZHAO Xueze1,FAN Jiangli1,2(),PENG Xiaojun1
Received:
2020-07-29
Revised:
2020-08-18
Online:
2021-01-05
Published:
2021-01-05
Contact:
FAN Jiangli
摘要:
由于具有微创、时空选择性高、重复应用不产生耐药性等优点,光动力治疗被认为是一种极具前景的新型癌症治疗方法。但是,传统的光敏剂靶向性有限,会对正常组织产生毒副作用,极大地限制了光动力治疗的临床应用。构建靶标型光敏剂和可激活光敏剂是提高光敏剂肿瘤靶向性的有效途径。本文按靶标型光敏剂和可激活型光敏剂进行分类,对目前的研究进展进行总结概述,并对未来光动力治疗所面临的挑战进行了展望。
中图分类号:
杨宇鑫, 赵学泽, 樊江莉, 彭孝军. 光动力治疗中提高光敏剂靶向性的研究进展[J]. 化工学报, 2021, 72(1): 1-13.
YANG Yuxin, ZHAO Xueze, FAN Jiangli, PENG Xiaojun. Research progress on improving the tumor-targeting of photosensitizers in photodynamic therapy[J]. CIESC Journal, 2021, 72(1): 1-13.
1 | Zhang Y, Wang F, Liu C, et al. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy[J]. ACS Nano, 2018, 12(1): 651-661. |
2 | Celli J P, Spring B Q, Rizvi I, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization[J]. Chemical Reviews, 2010, 110(5): 2795-2838. |
3 | Lovell J F, Liu T W, Chen J, et al. Activatable photosensitizers for imaging and therapy[J]. Chemical Reviews, 2010, 110(5): 2839-2857. |
4 | Agostinis P, Berg K, Cengel K A, et al. Photodynamic therapy of cancer: an update[J]. A Cancer Journal for Clinicians, 2011, 61(4): 250-281. |
5 | Fan W P, Huang P, Chen X Y, et al. Overcoming the Achilles' heel of photodynamic therapy[J]. Chemical Society Reviews, 2016, 45(23): 6488-6519. |
6 | Rerners J, Agostinis P, Berg K, et al. Assessing autophagy in the context of photodynamic therapy[J]. Autophagy,2010,6(1): 7-18. |
7 | 郑秉得, 赵园园, 李洪才, 等. 可激活抗癌光敏剂[J]. 化学进展, 2018, 30(9): 1403-1414. |
Zheng B D, Zhao Y Y, Li H C, et al. Activatable photodynamic anticancer photosensitizers[J]. Progress in Chemistry, 2018, 30(9): 1403-1414. | |
8 | Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3: 380-387. |
9 | Szacilowski K, Macyk W, Drzewiecka-Matuszak A, et al. Bioinorganic photochemistry: frontiers and mechanism[J]. Chemical Reviews, 2005, 105: 2647-2694. |
10 | Dichiara M, Prezzavento O, Marrazzo A, et al. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents[J]. European Journal of Medicinal Chemistry, 2017, 142: 459-485. |
11 | Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations[J]. Biomedicine & Pharmacotherapy, 2018, 106: 1098-1107. |
12 | Maruani A, Savoie H, Bryden F, et al. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic[J]. Chemical Communications, 2015, 51: 15304. |
13 | Henderson B W, Dougherty T J. How does photodynamic therapy work?[J]. Photochemistry and Photobiology, 1992, 55: 145-157. |
14 | Novohradsky V, Rovira A, Hally C, et al. Towards novel photodynamic anticancer agents generating superoxide anion radicals: a cyclometalated IrIII complex conjugated to a far-red emitting coumarin[J]. Angewandte Chemie International Edition, 2019, 58:6311-6315. |
15 | Dougherty T J, Potter W R, Weishaupt K R. The structure of the active component of hematoporphyrin derivative[J]. Porphyrins in Tumor Phototherapy, 1984, 170: 301. |
16 | Bellnier D, Dougherty T. A preliminary pharmacokinetic study of intravenous Photofrin® in patients[J].Journal of Clinical Laser Medicine and Surgery, 1996, 14: 311. |
17 | Moreira L M, dos Santos F V, Lyon J P, et al. ChemInform abstract: photodynamic therapy: porphyrins and phthalocyanines as photosensitizers[J]. Australian Journal of Chemistry, 2008, 61: 741. |
18 | 汪凌云, 曹德榕. 卟啉类光敏剂在光动力治疗中的应用研究[J]. 有机化学, 2012, 32(12): 2248-2264. |
Wang L Y, Cao D R. Research advances of porphyrin photosensitizers in photodynamic therapy[J]. China Journal of Organic Chemistry, 2012, 32(12): 2248-2264. | |
19 | 李美容, 蔡晓庆, 朱易峰, 等. 5-氟尿嘧啶光敏性偶联衍生物的合成、表征及抗癌活性研究[J]. 化学学报, 2011, 69: 425-430. |
Li M R, Cai X Q, Zhu Y F, et al. Synthesis and biological evaluation of novel coupling derivatives of photosensitizer and 5-fluorouracil as antineoplastic agents[J]. Acta Chimica Sinica, 2011, 69: 425-430. | |
20 | Obaid G, Broekgaarden M, Bulin A L, et al. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology[J]. Nanoscale, 2016, 8(25): 12471-12503. |
21 | Liu K, Xing R, Zou Q, et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie International Edition, 2016, 55: 3036. |
22 | 李明乐, 彭孝军. 靶标性酞菁类光敏剂的光动力疗法研究进展[J]. 化学学报, 2016, 74: 959-968. |
Li M L, Peng X J. Research progress on the phthalocyanine based targeting photosensitizers in photodynamic therapy[J]. Acta Chimica Sinica, 2016, 74: 959-968. | |
23 | Zhang F L, Huang Q, Zheng K, et al. A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc (Ⅱ) phthalocyanine and small molecule target-based anticancer drug erlotinib[J].Chemical Communication, 2013, 49: 9570. |
24 | Jung H S, Han J, Shi H, et al. Overcoming the limits of hypoxia in photodynamic therapy: a carbonic anhydrase IX-targeted approach[J]. Journal of the American Chemical Society, 2017, 139(22): 7595-7602. |
25 | Lock F E, Mcdonald P C, Lou Y, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche[J]. Oncogene, 2013, 32(44): 5210-5219. |
26 | Supuran C T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators[J]. Nature Reviews Drug Discovery, 2008, 7(2): 168-181. |
27 | Shimamura T, Perera S A, Foley K P, et al. Ganetespib (STA-9090), a nongeldanamycin Hsp90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer[J]. Clinical Cancer Research, 2012, 18(18): 4973-4985. |
28 | Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors[J]. Nature, 2003, 425(6956): 407-410. |
29 | Whitesell L, Lindquist S L. HSP90 and the chaperoning of cancer[J]. Nature Reviews Cancer, 2005, 5: 761-772. |
30 | Huang L F, Wei G F, Sun X Q, et al. A tumor-targeted Ganetespib-zinc phthalocyanine conjugate for synergistic chemophotodynamic therapy[J]. European Journal of Medicinal Chemistry, 2018, 151: 294-303. |
31 | Zhao X Z, Long S R, Li M L, et al. Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy[J]. Journal of the American Chemical Society, 2020, 142: 1510-1517. |
32 | Sharma A, Arambula J F, Seyoung Koo, et al. Hypoxia-targeted drug delivery[J]. Chemical Society Review, 2019, 48(3): 771-813. |
33 | Wang H, Chao Y, Liu J, et al. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy[J]. Biomaterials, 2018, 181: 310-317. |
34 | Daurio N A, Tuttle S W, Worth A J, et al. AMPK activation and metabolic reprogramming by tamoxifen through estrogen receptor-independent mechanisms suggests new uses for this therapeutic modality in cancer treatment[J]. Cancer Research, 2016, 76: 3295. |
35 | Li M L, Shao Y J, Kim J H, et al. Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics[J]. Journal of the American Chemical Society, 2020, 142: 5380-5388. |
36 | Maiti S, Park N, Han J H, et al. Gemcitabine-Coumarin-Biotin Conjugates: a target specific theranostic anti-cancer prodrug[J]. Journal of the American Chemical Society, 2013, 135(11): 4567-4572. |
37 | Li M L, Xia J, Tian R S, et al. Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors[J]. Journal of the American Chemical Society, 2018, 140: 14851-14859. |
38 | Gebremedhin K H, Li M L, Gao F L, et al. Benzo[a]phenoselenazine-based NIR photosensitizer for tumor-targeting photodynamic therapy via lysosomal-disruption pathway[J]. Dyes and Pigments, 2019, 170: 107617. |
39 | Zhang Q, Cai Y, Li Q Y, et al. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy[J]. Chemistry-A European Journal, 2017, 23: 14307-14315. |
40 | 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140. |
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140. | |
41 | Ranyuk E, Cauchon N, Klarskov K, et al. Phthalocyanine-peptide conjugates: receptor-targeting bifunctional agents for imaging and photodynamic therapy[J]. Journal of Medicinal Chemistry, 2013, 56: 1520-1534. |
42 | Liu Z W, Shi W B, Hong G B, et al. A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative[J]. Journal of Controlled Release, 2019, 310: 1-10. |
43 | Li M L, Xiong T, Du J J, et al. Superoxide radical photogenerator with amplification effect: surmounting the Achilles' heels of photodynamic oncotherapy[J]. Journal of the American Chemical Society, 2019, 141: 2695-2702. |
44 | Hyun H, Park M H, Owens E A, et al. Structure-inherent targeting of NIR fluorophores for parathyroid and thyroid gland imaging[J]. Nature Medicine, 2015, 21(2): 192-197. |
45 | Li M L, Long S R, Kang Y, et al. De novo design of phototheranostic sensitizers based on structure inherent targeting for enhanced cancer ablation[J]. Journal of the American Chemical Society, 2018, 140: 15820-15826. |
46 | Wong R C H, Lo P C, Ng D K P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers[J]. Coordination Chemistry Reviews, 2019, 379(SI): 30-46. |
47 | Li X S, Kolemen S, Yoon J, et al. Activatable photosensitizers: agents for selective photodynamic therapy[J]. Advanced Functional Materials, 2017, 27: 1604053. |
48 | Umezawa K, Yoshida M, Kamiya M, et al. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics[J]. Nature Chemistry, 2017, 9(3): 279-286. |
49 | Liu H W, Chen L L, Xu C Y, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging[J]. Chemical Society Reviews, 2018, 47: 7140-7180. |
50 | Majumdar P, Nomula R, Zhao J. Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy[J]. Journal of Materials Chemistry C, 2014, 2(30): 5982-5997. |
51 | Wu W T, Shao X D, Zhao J Z, et al. Controllable photodynamic therapy implemented by regulating singlet oxygen efficiency[J]. Advanced Science, 2017, 4: 1700113. |
52 | Yan S F, Chen J C, Cai L Z, et al. Phthalocyanine-based photosensitizer with tumor-pH-responsive properties for cancer theranostics[J]. Journal of Materials Chemistry B, 2018, 6: 6080-6088. |
53 | Sun J, Du K, Diao J J, et al. GSH and H2O2 co-activatable mitochondria-targeted photodynamic therapy under normoxia and hypoxia[J]. Angewandte Chemie International Edition, 2020, 59: 2-9. |
54 | Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications[J]. Chemical Reviews, 2017, 117:10043-10120. |
55 | Lv W, Zhang Z, Zhang K Y, et al. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia[J]. Angewandte Chemie International Edition, 2016, 55: 9947-9951. |
56 | Radunz S, Wedepohl S, Rohr M, et al. pH-Activatable singlet oxygen-generating boron-dipyrromethenes (BODIPYs) for photodynamic therapy and bioimaging[J]. Journal of Medicinal Chemistry, 2020, 63(4): 1699-1708. |
57 | You Y, Gibson S L, Hilf R, et al. Water soluble, core-modified porphyrins (3): Synthesis, photophysical properties, and in vitro studies of photosensitization, uptake, and localization with carboxylic acid-substituted derivatives[J]. Journal of Medical Chemistry, 2003, 46(17): 3734-3747. |
58 | Turan I S, Cakmak F P, Yildirim D C, et al. Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action[J]. Chemistry-A European Journal, 2014, 20: 16088-16092. |
59 | Wang X, Li P, Ding Q, et al. Observation of acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain[J]. Journal of the American Chemical Society, 2019, 141(5): 2061-2068. |
60 | Wu X, Sun X R, Guo Z Q, et al. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug[J]. Journal of the American Chemical Society, 2014, 136(9): 3579-3588. |
61 | Gu K Z, Xu Y S, Li H, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe[J]. Journal of the American Chemical Society, 2016, 138(16): 5334-5340. |
62 | Sun W, Fan J L, Hu C, et al. A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems[J]. Chemical Communications, 2013, 49(37): 3890-3892. |
63 | Liu H W, Hu X X, Li K, et al. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy[J]. Chemical Science, 2017, 8: 7689-7695. |
64 | Xu F, Li H D, He H Y, et al. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy[J]. Chemical Science, 2019, 10: 10586-10594. |
65 | Cao J F, Sun W, Fan J L. Insights into bishemicyanines with long emission wavelengths and high sensitivity in viscous environments[J]. Chinese Chemical Letters, 2020, 31(6): 1402-1405. |
66 | Zhou X, Li H D, Shi C, et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging[J]. Biomaterials, 2020, 253: 120089. |
67 | Zhai W H, Zhang Y K, Liu M, et al. Universal scaffold for an activatable photosensitizer with completely inhibited photosensitivity[J]. Angewandte Chemie International Edition, 2019, 131: 16754-16762. |
68 | Chiba M, Kamiya M, Tsuda-Sakurai K, et al. Activatable photosensitizer for targeted ablation of lacZ-positive cells with single-cell resolution[J]. ACS Central Science, 2019, 5: 1676-1681. |
69 | Lv W J, Chi S Y, Feng W Q, et al. Development of a red absorbing Se-rhodamine photosensitizer and its application for bio-orthogonally activatable photodynamic therapy[J]. Chemical Communication, 2019, 55: 7037. |
70 | Azoulay M, Tuffin G, Sallem W, et al. A new drug-release method using the staudinger ligation[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(12): 3147-3149. |
71 | Brakel R V, Vulders R C, Bokdam R J, et al. A doxorubicin prodrug activated by the staudinger reaction[J]. Bioconjugate Chemistry, 2008, 19(3): 714-718. |
72 | Vugts D J, Vervoort A, Walsum M S, et al. Synthesis of phosphine and antibody-azide probes for in vivo staudinger ligation in a pretargeted imaging and therapy approach[J]. Bioconjugate Chemistry, 2011, 22(10): 2072-2081. |
73 | Ichikawa Y, Kamiya M, Obata F, et al. Selective ablation of β-galactosidase-expressing cells with a rationally designed activatable photosensitizer[J]. Angewandte Chemie International Edition, 2014, 53: 6772-6775. |
74 | Chiba M, Ichikawa Y, Kamiya M, et al. An activatable photosensitizer targeted to γ-glutamyltranspeptidase[J]. Angewandte Chemie International Edition, 2017, 56: 10418-10422. |
[1] | 张玉权, 郭帅, 翁郁华, 杨勇飞, 黄渊余. 聚集诱导发光材料在药物递送与疾病治疗中的研究进展[J]. 化工学报, 2020, 71(9): 4102-4111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||