化工学报 ›› 2022, Vol. 73 ›› Issue (1): 18-31.doi: 10.11949/0438-1157.20210980

• 综述与专论 • 上一篇    下一篇

高分子材料阻燃与抑烟的分立设计思想

孙艺1(),姜润韬1(),金晶1,李凯涛1,林彦军1,2(),刘军枫1(),段雪1   

  1. 1.北京化工大学化工资源有效利用国家重点实验室,北京 100029
    2.西部矿业集团科技发展有限公司,青海 西宁 810000
  • 收稿日期:2021-07-15 修回日期:2021-10-20 出版日期:2022-01-05 发布日期:2022-01-18
  • 通讯作者: 林彦军,刘军枫 E-mail:buctsunyi@163.com;2019210627@mail.buct.edu.cn;linyj@mail.buct.edu.cn;ljf@mail.buct.edu.cn
  • 作者简介:孙艺(1995—),男,硕士研究生,buctsunyi@163.com|姜润韬(1997—),男,硕士研究生,2019210627@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(21975013);青海省重大科技专项(2020-GX-A1);中央高校基本科研业务费专项资金

Separation design strategy for flame retardancy and smoke suppression of polymer materials

Yi SUN1(),Runtao JIANG1(),Jing JIN1,Kaitao LI1,Yanjun LIN1,2(),Junfeng LIU1(),Xue DUAN1   

  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2.Technology Development of Western Mining Group Co. , Ltd. , Xining 810000, Qinghai, China
  • Received:2021-07-15 Revised:2021-10-20 Published:2022-01-05 Online:2022-01-18
  • Contact: Yanjun LIN,Junfeng LIU E-mail:buctsunyi@163.com;2019210627@mail.buct.edu.cn;linyj@mail.buct.edu.cn;ljf@mail.buct.edu.cn

摘要:

随着高分子材料在人类生产生活中的广泛应用,其防火安全性问题日益凸显,高效环保阻燃抑烟剂的开发成为当前材料领域亟待解决的问题之一。然而,与发展较为成熟的阻燃剂研究领域相比,世界各国在抑烟剂方面的研究普遍处于起步和初期发展阶段。同时,多数抑烟剂的研究处于阻燃剂的从属地位,即在阻燃剂的基础上附加抑烟的性能,对单功能抑烟剂的开发重视度不够,限制了其进一步的发展。高分子材料中结构和官能团的多样性使其燃烧和发烟机理有显著不同,因此针对不同种类的高分子材料的燃烧和发烟过程,其阻燃和抑烟剂在组成和结构上的设计亦应有明显区别。以同一种材料实现阻燃和抑烟的兼顾,往往顾此失彼,导致两者性能均无法得到最大的发挥。因此,本文提出将阻燃剂和抑烟剂的功能分离开来的设计思想,加强单功能抑烟剂的研究投入,对阻燃/抑烟材料的化学组成和结构分别进行有针对性的设计,再进行功能优化复配,将是实现高分子材料高效阻燃抑烟的有效途径之一。

关键词: 高分子聚合物, 阻燃, 抑烟, 分立设计

Abstract:

With the wide application of polymer materials in human production and life, their fire safety problems have become increasingly prominent, and the development of high-efficiency and environmentally friendly flame-retardant smoke suppressants has become one of the urgent problems to be solved in the current material field. However, the smoke suppressants did not receive enough attention compared to the relatively mature research of flame retardants for a long time. Most of the current researches on smoke suppression of polymers are the investigation of the smoke suppression property of a known flame retardant and thus developing the so-called “bifunctional materials” with both flame retardancy and smoke suppression properties. The insufficient attention on the smoke suppressant materials greatly limits their development. As we have known, the mechanisms of combustion and smoke emission varied on different polymer materials due to the diversity of structure and functional groups within different polymer materials. Therefore, the design of flame retardants and smoke suppressants of different polymers should also be significantly different. Meanwhile, the flame retardancy and smoke suppression performances are hard to be optimized simultaneously with one material. Therefore, we propose to separate the flame retardancy and smoke suppression in two different materials and strengthen the development of single-function smoke suppressants. Optimizing the flame retardants and smoke suppressants based on the chemical nature of the polymers separately and then combining them might be an effective way to improve the flame retardancy and smoke suppression performance of polymer materials in the future.

Key words: polymer, flame retardancy, smoke suppression, separation design

中图分类号: 

  • TQ 314.24
1 Yang Y, Díaz Palencia J L, Wang N, et al. Nanocarbon-based flame retardant polymer nanocomposites[J]. Molecules, 2021, 26(15): 4670.
2 Idumah C I, Hassan A, Affam A C. A review of recent developments in flammability of polymer nanocomposites[J]. Reviews in Chemical Engineering, 2015, 31(2): 149-177.
3 Horrocks A R. The potential for bio-sustainable organobromine-containing flame retardant formulations for textile applications—a review[J]. Polymers, 2020, 12(9): 2160.
4 Pan Y T, Yuan Y, Wang D Y, et al. An overview of the flame retardants for poly (vinyl chloride): recent states and perspective[J]. Chinese Journal of Chemistry, 2020, 38(12): 1870-1896.
5 Morgan A B. The future of flame retardant polymers-unmet needs and likely new approaches[J]. Polymer Reviews, 2019, 59(1): 25-54.
6 Fahami A, Lee J, Lazar S, et al. Mica-based multilayer nanocoating as a highly effective flame retardant and smoke suppressant[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19938-19943.
7 He W T, Song P G, Yu B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Progress in Materials Science, 2020, 114: 100687.
8 郑秀婷, 吴大鸣, 刘颖, 等. 纳米双羟基复合金属氧化物(LDHs)对聚氯乙烯(PVC)阻燃抑烟研究[J]. 塑料, 2004, 33(3): 62-65, 31.
Zheng X T, Wu D M, Liu Y, et al. Flame retardancy and smoke suppression of polyvinyl chloride(PVC) filled with layered double hydroxides(LDHs)[J]. Plastics, 2004, 33(3): 62-65, 31.
9 Camino G. Fire retardant polymer materials new perspectives[J]. Fire Safety Science, 2005, 8: 101-110.
10 Wan L, Deng C, Chen H, et al. Flame-retarded thermoplastic polyurethane elastomer: from organic materials to nanocomposites and new prospects[J]. Chemical Engineering Journal, 2021, 417: 129314.
11 Huang C, Zhao Z Y, Deng C, et al. Facile synthesis of phytic acid and aluminum hydroxide chelate-mediated hybrid complex toward fire safety of ethylene-vinyl acetate copolymer[J]. Polymer Degradation and Stability, 2021, 190: 109659.
12 Chen L, Wang Y Z. A review on flame retardant technology in China (Part I): Development of flame retardants[J]. Polymers for Advanced Technologies, 2010, 21(1): 1-26.
13 Gao F, Tong L F, Fang Z P. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate)[J]. Polymer Degradation and Stability, 2006, 91(6): 1295-1299.
14 Ke C H, Li J, Fang K Y, et al. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide[J]. Polymer Degradation and Stability, 2010, 95(5): 763-770.
15 Tang Y, Hu Y, Li B G, et al. Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(23): 6163-6173.
16 Modesti M, Lorenzetti A, Besco S, et al. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams[J]. Polymer Degradation and Stability, 2008, 93(12): 2166-2171.
17 Liu H, Zhang B, Han J. Flame retardancy and smoke suppression properties of flexible polyurethane foams containing an aluminum phosphate microcapsule[J]. RSC Advances, 2017, 7(56): 35320-35329.
18 Levchik S V, Weil E D. A review of recent progress in phosphorus-based flame retardants[J]. Journal of Fire Sciences, 2006, 24(5): 345-364.
19 Liu C, Qian C, Qian R S, et al. Numerical prediction of effective diffusivity in hardened cement paste between aggregates using different shapes of cement powder[J]. Construction and Building Materials, 2019, 223: 806-816.
20 Chen X L, Jiang Y F, Jiao C M. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate[J]. Journal of Hazardous Materials, 2014, 266: 114-121.
21 Chen X L, Jiao C M, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(3): 1037-1043.
22 Yang R, Ma B B, Zhang X, et al. Fire retardance and smoke suppression of polypropylene with a macromolecular intumescent flame retardant containing caged bicyclic phosphate and piperazine[J]. Journal of Applied Polymer Science, 2019, 136(25): 47593.
23 Wei W C, Deng C, Huang S C, et al. Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of a polyurethane elastomer[J]. Journal of Materials Chemistry A, 2018, 6(18): 8643-8654.
24 Liu C, Wu W, Shi Y Q, et al. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites[J]. Composites Part B: Engineering, 2020, 203: 108486.
25 Ma H Y, Tong L F, Xu Z B, et al. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites[J]. Applied Clay Science, 2008, 42(1/2): 238-245.
26 Du B X, Guo Z H, Song P A, et al. Flame retardant mechanism of organo-bentonite in polypropylene[J]. Applied Clay Science, 2009, 45(3): 178-184.
27 Hassan M, Nour M, Abdelmonem Y, et al. Synergistic effect of chitosan-based flame retardant and modified clay on the flammability properties of LLDPE[J]. Polymer Degradation and Stability, 2016, 133: 8-15.
28 Ye L, Ren J, Cai S Y, et al. Poly(lactic acid) nanocomposites with improved flame retardancy and impact strength by combining of phosphinates and organoclay[J]. Chinese Journal of Polymer Science, 2016, 34(6): 785-796.
29 Yang W, Hu Y, Tai Q L, et al. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 794-800.
30 He W T, Zhu H, Xiang Y S, et al. Enhancement of flame retardancy and mechanical properties of polyamide 6 by incorporating an aluminum salt of diisobutylphosphinic combined with organoclay[J]. Polymer Degradation and Stability, 2017, 144: 442-453.
31 Huang G B, Zhuo A, Wang L Q, et al. Preparation and flammability properties of intumescent flame retardant-functionalized layered double hydroxides/polymethyl methacrylate nanocomposites[J]. Materials Chemistry and Physics, 2011, 130(1/2): 714-720.
32 Huang G B, Fei Z D, Chen X Y, et al. Functionalization of layered double hydroxides by intumescent flame retardant: preparation, characterization, and application in ethylene vinyl acetate copolymer[J]. Applied Surface Science, 2012, 258(24): 10115-10122.
33 Kalali E N, Wang X, Wang D Y. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties[J]. Journal of Materials Chemistry A, 2015, 3(13): 6819-6826.
34 Huang G B, Chen S Q, Tang S W, et al. A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties[J]. Materials Chemistry and Physics, 2012, 135(2/3): 938-947.
35 Hu W Z, Yu B, Jiang S D, et al. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene[J]. Journal of Hazardous Materials, 2015, 300: 58-66.
36 Jin Y X, Huang G B, Han D M, et al. Functionalizing graphene decorated with phosphorus-nitrogen containing dendrimer for high-performance polymer nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 86: 9-18.
37 Huang G B, Song P G, Liu L N, et al. Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites[J]. Carbon, 2016, 98: 689-701.
38 Chen T, Xiao X, Wang J K, et al. Fire, thermal and mechanical properties of TPE composites with systems containing piperazine pyrophosphate (PAPP), melamine phosphate (MPP) and titanium dioxide (TiO2)[J]. Plastics, Rubber and Composites, 2019, 48(4): 149-159.
39 Ji X Y, Chen D Y, Wang Q W, et al. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane[J]. Composites Science and Technology, 2018, 163: 49-55.
40 Tabuani D, Bellucci F, Terenzi A, et al. Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application[J]. Polymer Degradation and Stability, 2012, 97(12): 2594-2601.
41 Lawson D F. Methods for reduction of smoke from burning polymers[M]//Flame-Retardant Polymeric Materials. Boston: Springer, 1982: 39-95.
42 Starnes W H. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride)[J]. Progress in Polymer Science, 2002, 27(10): 2133-2170.
43 Levchik S V, Weil E D. Overview of the recent literature on flame retardancy and smoke suppression in PVC[J]. Polymers for Advanced Technologies, 2005, 16(10): 707-716.
44 Lattimer R P, Kroenke W J. The functional role of molybdenum trioxide as a smoke retarder additive in rigid poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 1981, 26(4): 1191-1210.
45 Liang H H, Ho M C. Toxicity characteristics of commercially manufactured insulation materials for building applications in Taiwan[J]. Construction and Building Materials, 2007, 21(6): 1254-1261.
46 Elomaa M, Sarvaranta L, Mikkola E, et al. Combustion of polymeric materials[J]. Critical Reviews in Analytical Chemistry, 1997, 27(3): 137-197.
47 Lawson D F. Investigation of the mechanistic basis for ferrocene activity during the combustion of vinyl polymers[J]. Journal of Applied Polymer Science, 1976, 20(8): 2183-2192.
48 Edelson D, Kuck V J, Lum R M, et al. Anomalous behavior of molybdenum oxide as a fire retardant for polyvinyl chloride[J]. Combustion and Flame, 1980, 38: 271-283.
49 Pike R D, Starnes, Jeng J P, et al. Low-valent metals as reductive cross-linking agents: a new strategy for smoke suppression of poly(vinyl chloride)[J]. Macromolecules, 1997, 30(22): 6957-6965.
50 Lum R M. MoO3 additives for PVC: a study of the molecular interactions[J]. Journal of Applied Polymer Science, 1979, 23(4): 1247-1263.
51 Green J. Mechanisms for flame retardancy and smoke suppression—a review[J]. Journal of Fire Sciences, 1996, 14(6): 426-442.
52 Rodolfo Jr A, Innocentini-Mei L H. Synthesis of copper(Ⅱ)-zinc-molybdenum compounds as smoke suppressants for PVC compositions[J]. Fire and Materials, 2021, 45(3): 396-405.
53 Liu L, Wu W H, Xue H H, et al. A series of metal molybdates as flame-retardants and smoke suppressants for flexible PVC[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 1881-1885.
54 Yang L, Wang Y Y. Smoke suppressant and flame retardant properties of PVC/zinc hydroxystannate composites[J]. Advanced Materials Research, 2012, 512/513/514/515: 2804-2807.
55 Guo J H, Liu G T, Guo Y L, et al. Enhanced flame retardancy and smoke suppression of polypropylene by incorporating zinc oxide nanowires[J]. Journal of Polymer Research, 2019, 26(1): 1-11.
56 Tu H B, Wang J Q. An XPS investigation of thermal degradation and charring processes for PVC and PVC/Cu2O systems in the condensed phase—Ⅱ[J]. Polymer Degradation and Stability, 1996, 54(2/3): 195-203.
57 Matsusaka K, Sugimoto Y, Murakami I. Effects of divalent metal strearates on the early stages of the thermal degradation of poly(vinyl chloride)[J]. Polymer Communications (Guildford, England), 1985, 26(12): 371-374.
58 Ballistreri A, Foti S, Maravigna P, et al. Effect of metal oxides on the evolution of aromatic hydrocarbons in the thermal decomposition of PVC[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(10): 3101-3110.
59 Ballistreri A, Montaudo G, Puglisi C, et al. Mechanism of smoke suppression by metal oxides in PVC[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19(6): 1397-1408.
60 赵芸, 李峰, Evans D G, 等. 镁基高抑烟纳米阻燃剂在高分子材料中的应用研究[J]. 塑料, 2002, 31(4): 57-63.
Zhao Y, Li F, Evans D G, et al. Applications of improved smoke suppression inorganic flame retardant nanomaterials containing magnesium in polymeric materials[J]. Plastics, 2002, 31(4): 57-63.
61 Bao Y Z, Huang Z M, Li S X, et al. Thermal stability, smoke emission and mechanical properties of poly(vinyl chloride)/hydrotalcite nanocomposites[J]. Polymer Degradation and Stability, 2008, 93(2): 448-455.
62 Xu W Z, Wang S Q, Li A J, et al. Synthesis of aminopropyltriethoxysilane grafted/tripolyphosphate intercalated ZnAl LDHs and their performance in the flame retardancy and smoke suppression of polyurethane elastomer[J]. RSC Advances, 2016, 6(53): 48189-48198.
63 Zhou X H, Chen H, Chen Q H, et al. Synthesis and characterization of two-component acidic ion intercalated layered double hydroxide and its use as a nanoflame-retardant in ethylene vinyl acetate copolymer (EVA)[J]. RSC Advances, 2017, 7(84): 53064-53075.
64 Jiao C M, Jiang H Z, Chen X L. Reutilization of abandoned molecular sieve as flame retardant and smoke suppressant for thermoplastic polyurethane elastomer[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 3905-3913.
65 Liu X D, Guo J, Tang W F, et al. Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan[J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 291-298.
66 Liu C, Zong R, Chen H, et al. Comparative study of toxicity for thermoplastic polyurethane and its flame-retardant composites[J]. Journal of Thermoplastic Composite Materials, 2019, 32(10): 1393-1407.
67 Huang S C, Deng C, Wang S X, et al. Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate[J]. Polymer Degradation and Stability, 2019, 165: 126-136.
68 Li R M, Deng C, Deng C L, et al. An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems[J]. RSC Advances, 2015, 5(21): 16328-16339.
69 Deng C L, Deng C, Zhao J, et al. Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin[J]. Polymers for Advanced Technologies, 2014, 25(8): 861-871.
70 Deng C L, Du S L, Zhao J, et al. An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance[J]. Polymer Degradation and Stability, 2014, 108: 97-107.
71 王德富. 水滑石基PVC阻燃抑烟剂组成、界面结构调控及其作用机制研究[D]. 北京: 北京化工大学, 2020.
Wang D F. Composition, interfacial structure regulation and mechanism study of layered double hydroxides based flame retardant and smoke suppressant for flexible PVC[D]. Beijing: Beijing University of Chemical Technology, 2020.
72 林彦军, 李凯涛, 段雪. 一种插层水滑石抑烟剂及其制备方法: 201611089694.6[P]. 2016-11-30.
Lin Y J, Li K T, Duan X. Intercalated layered double hydroxide smoke inhibitor and preparation method thereof: 201611089694.6[P]. 2016-11-30.
73 黄小强. 层状结构PVC抑烟剂的结构设计及性能研究[D]. 北京: 北京化工大学, 2019.
Huang X Q. Structural design and properties of layered structure PVC smoke suppressant[D]. Beijing: Beijing University of Chemical Technology, 2019.
74 Ren H Y, Qing K L, Chen Y, et al. Smoke suppressant in flame retarded thermoplastic polyurethane composites: synergistic effect and mechanism study[J]. Nano Research, 2021, 14: 3926-3934.
75 林彦军, 邹苗苗, 李凯涛, 等. 一种聚氨酯高效抑烟剂的制备及应用: 201810557672.0[P]. 2018-10-16.
Lin Y J, Zou M M, Li K T, et al. Preparation and application of polyurethane efficient smoke suppressant: 201810557672.0[P]. 2018-10-16.
76 林彦军, 黄小强, 卿克兰, 等. 一种PVC抑烟剂及其制备方法: 201910385884.X[P]. 2019-09-03.
Lin Y J, Huang X Q, Qing K L, et al. PVC smoke suppressant and preparation method thereof: 201910385884.X[P]. 2019-09-03.
77 Chen X, Liu L, Jiao C, et al. Influence of ferrite yellow on combustion and smoke suppression properties in intumescent flame-retardant epoxy composites[J]. High Performance Polymers, 2015, 27(4): 412-425.
78 Zhang X, Xu C, Zhu Z, et al. Synergistic effect of strontium stannate and ammonium polyphosphate on flame-retardant and smoke-suppressant of flexible polyurethane foam[J]. International Journal of Polymer Analysis and Characterization, 2021, 26(6): 517-531.
79 Rao W H, Liao W, Wang H, et al. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite[J]. Journal of Hazardous Materials, 2018, 360: 651-660.
[1] 纪荣彬, 陈婷, 彭超华, 夏龙, 陈国荣, 罗伟昂, 曾碧榕, 许一婷, 袁丛辉, 戴李宗. 有机磷/硼杂化小分子阻燃改性环氧树脂[J]. 化工学报, 2021, 72(7): 3856-3868.
[2] 翟瑞,杨昭,张勇,吕子建,陈裕博. 可燃工质氨的燃烧及阻燃机理的研究[J]. 化工学报, 2021, 72(10): 5424-5429.
[3] 李梦迪, 王波, 王哲慧, 张晔, 杨荣, 李锦春. 基于环三磷腈磷氮阻燃剂的合成及其在聚氨酯泡沫的应用[J]. 化工学报, 2020, 71(4): 1871-1880.
[4] 连汉青, 郑玉婴, 邱洪峰. MAPP阻燃EVA泡沫复合材料的制备及其性能[J]. 化工学报, 2016, 67(7): 3055-3062.
[5] 杨荣, 乔红, 胡文田, 许亮, 宋艳, 李锦春. 反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫[J]. 化工学报, 2016, 67(5): 2169-2175.
[6] 胡文田, 杨荣, 许亮, 宋艳, 李锦春. 基于环三磷腈/磷酸酯反应型磷-氮阻燃剂的合成、热降解及应用[J]. 化工学报, 2015, 66(5): 1976-1982.
[7] 陈志杰, 郑玉婴, 邱洪峰. TPS/EVA泡沫复合材料的制备及其阻燃与力学性能[J]. 化工学报, 2015, 66(3): 1221-1227.
[8] 马川, 孙路石, 金立梅, 向军, 胡松, 苏胜. 阻燃HIPS塑料热解动力学模型[J]. 化工学报, 2014, 65(9): 3479-3484.
[9] 吴唯, 惠林林, 王铮. 沉淀法制备EPDM-g-MAZn离聚物及其对膨胀阻燃聚丙烯性能的影响[J]. 化工学报, 2014, 65(12): 5017-5022.
[10] 田秀娟, 王忠卫, 于青, 高军. 含磷阻燃剂阻燃环氧树脂热降解动力学[J]. 化工学报, 2014, 65(12): 5082-5089.
[11] 王其磊. 纳米MH/AF/NBR复合材料物理力学性能及耐热阻燃机理[J]. 化工学报, 2014, 65(12): 5047-5053.
[12] 蒋巍,姚姗姗. 新型含磷阻燃剂的制备及性能[J]. 化工进展, 2014, 33(08): 2140-2143.
[13] 钱伟1,3,李湘洲1,2,吴志平1,房丛丛4,殷凯1,贾可敬1. 茶皂素基膨胀型阻燃剂的制备及其在涂料中的应用[J]. 化工进展, 2014, 33(01): 198-203.
[14] 李芬, 罗运军, 李晓萌, 李杰. 磷-氮协效阻燃水性聚氨酯的性能[J]. 化工学报, 2012, 63(2): 653-657.
[15] 周文君, 宋健, 陈友财, 王雪芹, 张敬礼. 聚硼硅氧烷阻燃剂的合成工艺及其在聚碳酸酯中的应用[J]. 化工学报, 2012, 63(10): 3365-3371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!