化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6002-6015.DOI: 10.11949/0438-1157.20211199
王宏梅(),王挥遒,宋文龙,崔超婕(),陈兆辉,张晨曦,骞伟中(),魏飞
收稿日期:
2021-08-20
修回日期:
2021-12-01
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
崔超婕,骞伟中
作者简介:
王宏梅(1998—),女,博士研究生,基金资助:
Hongmei WANG(),Huiqiu WANG,Wenlong SONG,Chaojie CUI(),Zhaohui CHEN,Chenxi ZHANG,Weizhong QIAN(),Fei WEI
Received:
2021-08-20
Revised:
2021-12-01
Online:
2021-12-05
Published:
2021-12-22
Contact:
Chaojie CUI,Weizhong QIAN
摘要:
针对甲醇芳构化过程中,金属-分子筛催化剂上ZSM-5的择型效应对C2~C5烃不起作用,导致不易转化的烷烃副产物大量生成,单程芳烃收率下降的现状,综述了甲醇芳构化与烷烃芳构化的催化机制与过程特性、多段流化床的结构及其应用,以及多段变温流化床在甲醇芳构化与烷烃芳构化过程的研究进展。在流化床不同的轴向位置,根据起始原料与中间产物的活性,可以采用不同的温度来促进甲醇与烷烃中间体的转化。该技术可有效提高单程芳烃收率,降低后续分离成本和能耗。同时,其中涉及的烷烃芳构化也可能发展成独立的技术,具有广阔的前景。
中图分类号:
王宏梅, 王挥遒, 宋文龙, 崔超婕, 陈兆辉, 张晨曦, 骞伟中, 魏飞. 多段流化床强化甲醇或烷烃芳构化研究进展[J]. 化工学报, 2021, 72(12): 6002-6015.
Hongmei WANG, Huiqiu WANG, Wenlong SONG, Chaojie CUI, Zhaohui CHEN, Chenxi ZHANG, Weizhong QIAN, Fei WEI. Progress in the aromatization of methanol or alkane in multi-stage fluidized beds[J]. CIESC Journal, 2021, 72(12): 6002-6015.
1 | Salonen L M, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures[J]. Angewandte Chemie International Edition, 2011, 50(21): 4808-4842. |
2 | 赵云, 刘春燕, 刘家旭, 等. Zn/NaHZSM-5沸石在C5~C8链烷烃芳构化反应中的催化性能[J]. 化工学报, 2019, 70(6): 2182-2191. |
Zhao Y, Liu C Y, Liu J X, et al. Catalytic performance of Zn/NaHZSM-5 zeolite in the aromatization of C5—C8 alkane[J]. CIESC Journal, 2019, 70(6): 2182-2191. | |
3 | Guisnet M, Gnep N S. Aromatization of propane over GaHMFI catalysts. Reaction scheme, nature of the dehydrogenating species and mode of coke formation[J]. Catalysis Today, 1996, 31(3/4): 275-292. |
4 | 施梅勤, 郑慧新, 魏爱平, 等. Zn助剂对WC/HZSM-5催化正己烷芳构化性能影响[J]. 化工学报, 2015, 66(2): 553-560. |
Shi M Q, Zheng H X, Wei A P, et al. Effect of zinc additive on n-hexane aromatization over WC/HZSM-5 catalysts[J]. CIESC Journal, 2015, 66(2): 553-560. | |
5 | 何霖, 程牧曦, 潘相米, 等. 丙烷芳构化催化剂活性组分浸渍方法优化[J]. 化工学报, 2017, 68: 204-209. |
He L, Cheng M X, Pan X M, et al. Optimization of impregnation methods for propane aromatization catalyst[J]. CIESC Journal, 2017, 68: 204-209. | |
6 | Xu X Y, Liu Y, Zhang F, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68. |
7 | Zhang M Z, Xu S T, Wei Y X, et al. Changing the balance of the MTO reaction dual-cycle mechanism: reactions over ZSM-5 with varying contact times[J]. Chinese Journal of Catalysis, 2016, 37(8): 1413-1422. |
8 | 陈坦, 陈皓, 傅杰, 等. CuO/HZSM-5催化溴甲烷芳构化制备芳烃[J]. 化工学报, 2017, 68(6): 2344-2351. |
Chen T, Chen H, Fu J, et al. Catalytic performance of CuO/HZSM-5 in aromatic synthesis from CH3Br[J]. CIESC Journal, 2017, 68(6): 2344-2351. | |
9 | 金放, 张鹏, 吴桂英, 等. Bronsted方程动力学模型研究ZSM-5催化乙烯齐聚及芳构化活性和酸强度分布之间的定量关系[J]. 化工学报, 2020, 71(5): 2076-2087. |
Jin F, Zhang P, Wu G Y, et al. Bronsted equation kinetic modeling for quantitative relationship between activity and acidity strength distribution in oligomerization and aromatization of ethylene over ZSM-5 catalyst[J]. CIESC Journal, 2020, 71(5): 2076-2087. | |
10 | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
11 | Meng X H, Wang Z X, Zhang R, et al. Catalytic conversion of C4 fraction for the production of light olefins and aromatics[J]. Fuel Processing Technology, 2013, 116: 217-221. |
12 | Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie International Edition, 2012, 51(24): 5810-5831. |
13 | Meinhold R H, Bibby D M. 13C CPMAS n.m.r. study of coke formation on HZSM-5[J]. Zeolites, 1990, 10(2): 121-130. |
14 | 汤效平, 黄晓凡, 崔宇, 等. 甲醇制芳烃催化剂失活特性研究进展[J]. 工业催化, 2018, 26(11): 7-13. |
Tang X P, Huang X F, Cui Y, et al. Research advances on deactivation characteristics of aromatic catalysts for methanol-to-aromatics[J]. Industrial Catalysis, 2018, 26(11): 7-13. | |
15 | 楚爽, 李剑, 杨丽娜, 等. ZSM-5甲醇芳构化催化剂积炭研究进展[J]. 天然气化工(C1化学与化工), 2016, 41(4): 89-93. |
Chu S, Li J, Yang L N, et al. Research progress in coke deposition on ZSM-5 catalysts for methanol to aromatics[J]. Natural Gas Chemical Industry, 2016, 41(4): 89-93. | |
16 | 张娜, 徐亚荣, 徐新良, 等. Zn/ZSM-5催化剂在甲醇制芳烃(MTA)反应中的失活与再生[J]. 天然气化工(C1化学与化工), 2015, 40(6): 18-21, 27. |
Zhang N, Xu Y R, Xu X L, et al. Deactivation and regeneration of Zn/ZSM-5 catalyst for conversion of methanol to aromatics[J]. Natural Gas Chemical Industry, 2015, 40(6): 18-21, 27. | |
17 | Bibby D M, Howe R F, McLellan G D. Coke formation in high-silica zeolites[J]. Applied Catalysis A: General, 1992, 93(1): 1-34. |
18 | Chen D, Rebo H P, Moljord K, et al. Influence of coke deposition on selectivity in zeolite catalysis[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3473-3479. |
19 | de Lucas A, Canizares P, Durán A, et al. Coke formation, location, nature and regeneration on dealuminated HZSM-5 type zeolites[J]. Applied Catalysis A: General, 1997, 156(2): 299-317. |
20 | 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001: 1-532. |
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001: 1-532. | |
21 | 汪智国, 魏飞. 鼓泡床、湍动床固含率的相似分布规律[J]. 石油化工, 1999, 28(2): 87-90 |
Wang Z G, Wei F. Similarity in radial profiles of solids fraction in bubbling and turbulent fluidized bed[J]. Petrochemical Technology, 1999, 28(2): 87-90 | |
22 | 赵珺, 辛振林, 张小岗, 等. 多孔挡板流化床还原UO3反应器模型的研究[J]. 核科学与工程, 1992, 12(1): 56-65, 7. |
Zhao J, Xin Z L, Zhang X G, et al. Study on mathematical model for UO3 reduction with perforated baffled fluidized bed[J]. Chinese Journal of Nuclear Science and Engineering, 1992, 12(1): 56-65, 7. | |
23 | Sun G L, Grace J R. The effect of particle size distribution on the performance of a catalytic fluidized bed reactor[J]. Chemical Engineering Science, 1990, 45(8): 2187-2194. |
24 | Shnaider G S. Evaluation of the hydrodynamic conditions in multistaged fluidized countercurrent flow reactors in pilot and semicommercial catalytic cracking units[J]. The Chemical Engineering Journal, 1988, 38(2): 97-109. |
25 | Lin S C, Arastoopour H, Kono H. Experimental and theoretical study of a multistage fluidized-bed reactor[J]. Powder Technology, 1986, 48(2): 125-140. |
26 | Krisrnaiah K, Pydisetty Y, Varma Y B G. Residence time distribution of solids in multistage fluidisation[J]. Chemical Engineering Science, 1982, 37(9): 1371-1377. |
27 | Krishnaiah K, Varma Y B G. Pressure drop, solids concentration and mean holding time in multistage fluidisation[J]. The Canadian Journal of Chemical Engineering, 1982, 60(3): 346-352. |
28 | Schulz H. “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes[J]. Catalysis Today, 2010, 154(3/4): 183-194. |
29 | Stöcker M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Materials, 1999, 29(1/2): 3-48. |
30 | Haw J F, Song W, Marcus D M, et al. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research, 2003, 36(5): 317-326. |
31 | Zhang M Z, Xu S T, Li J Z, et al. Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: carbenium ions formation and reaction mechanism[J]. Journal of Catalysis, 2016, 335: 47-57. |
32 | Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons[J]. ACS Catalysis, 2013, 3(1): 18-31. |
33 | Wang S, Chen Y Y, Qin Z F, et al. Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite[J]. Journal of Catalysis, 2019, 369: 382-395. |
34 | Derouane E G, Védrine J C, Pinto R R, et al. The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity[J]. Catalysis Reviews, 2013, 55(4): 454-515. |
35 | Bjørgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species[J]. Journal of Catalysis, 2007, 249(2): 195-207. |
36 | Wang J B, Wei Y X, Li J Z, et al. Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite[J]. Catalysis Science & Technology, 2016, 6(1): 89-97. |
37 | Zhang J G, Qian W Z, Tang X P, et al. Influence of catalyst acidity on dealkylation, isomerization and alkylation in MTA process[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1281-1288. |
38 | Zhang J G, Qian W Z, Kong C Y, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5): 2982-2988. |
39 | Xu J, Wang Q, Deng F. Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy[J]. Accounts of Chemical Research, 2019, 52(8): 2179-2189. |
40 | Hu Q F, Huang X F, Cui Y, et al. High yield production of C2—C3 olefins and para-xylene from methanol using a SiO2-coated FeOx/ZSM-5 catalyst[J]. RSC Advances, 2017, 7(46): 28940-28944. |
41 | Conte M, Lopez-Sanchez J A, He Q, et al. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catalysis Science & Technology, 2012, 2(1): 105-112. |
42 | Choudhary V R, Kinage A K. Methanol-to-aromatics conversion over H-gallosilicate (MFI): influence of Si/Ga ratio, degree of H+ exchange, pretreatment conditions, and poisoning of strong acid sites[J]. Zeolites, 1995, 15(8): 732-738. |
43 | Gao P, Wang Q, Xu J, et al. Brønsted/lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy[J]. ACS Catalysis, 2018, 8(1): 69-74. |
44 | Ono Y, Adachi H, Senoda Y. Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988, 84(4): 1091. |
45 | Inoue Y, Nakashiro K, Ono Y. Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites[J]. Microporous Materials, 1995, 4(5): 379-383. |
46 | Tian T, Qian W Z, Tang X P, et al. Deactivation of Ag/ZSM-5 catalyst in the aromatization of methanol[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3305-3309. |
47 | Barthos R, Bánsági T, Süli Zakar T, et al. Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts[J]. Journal of Catalysis, 2007, 247(2): 368-378. |
48 | Shen K, Qian W Z, Wang N, et al. Fabrication of c-axis oriented ZSM-5 hollow fibers based on an in situ solid-solid transformation mechanism[J]. Journal of the American Chemical Society, 2013, 135(41): 15322-15325. |
49 | Wang N, Hou Y L, Sun W J, et al. Modulation of b-axis thickness within MFI zeolite: correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion[J]. Applied Catalysis B: Environmental, 2019, 243: 721-733. |
50 | Ma Y H, Wang N, Qian W Z, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Advances, 2016, 6(84): 81198-81202. |
51 | Liu Y, Zhou X Z, Pang X M, et al. Improved para-xylene selectivity in meta-xylene isomerization over ZSM-5 crystals with relatively long b-axis length[J]. ChemCatChem, 2013, 5(6): 1517-1523. |
52 | Wang H Q, Hou Y L, Sun W J, et al. Insight into the effects of water on the ethene to aromatics reaction with HZSM-5[J]. ACS Catalysis, 2020, 10(9): 5288-5298. |
53 | Chen Z H, Song W L, Hou Y L, et al. Temperature-dependent secondary conversion of primary products from methanol aromatization in a two-stage fluidized bed[J]. Fuel, 2020, 267: 117204. |
54 | Kannan C S, Rao S S, Varma Y B G. A study of stable range of operation in multistage fluidised beds[J]. Powder Technology, 1994, 78(3): 203-211. |
55 | Kawabata J I, Tazaki Y, Chiba T, et al. Effect of perforated plate baffles on particle segregation in gas fluidised beds of solid mixtures[J]. Journal of Chemical Engineering of Japan, 1981, 14(3): 246-249. |
56 | 骞伟中, 周华群, 汪展文, 等. 外置溢流管型双层流化床冷模研究[J]. 石油化工, 2002, 31(6): 444-446. |
Qian W Z, Zhou H Q, Wang Z W, et al. Cold model study of two-stage fluidized bed with downcomer[J]. Petrochemical Technology, 2002, 31(6): 444-446. | |
57 | 张晨曦, 蔡达理, 贾瞾, 等. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(1): 155-170. |
Zhang C X, Cai D L, Jia Z, et al. Non-uniform gas solids distribution in fluidized beds[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 155-170. | |
58 | Zhang C X, Qian W Z, Wang Y, et al. Heterogeneous catalysis in multi-stage fluidized bed reactors: from fundamental study to industrial application[J]. The Canadian Journal of Chemical Engineering, 2019, 97(3): 636-644. |
59 | 周婉华, 杨启业, 周复昌. 60万t/a重油催化裂化重叠式两段再生技术的设计开发与应用[J]. 石油炼制与化工, 1996, 27(9): 13-19. |
Zhou W H, Yang Q Y, Zhou F C. Design, development and application of overlapping two-stage regeneration technology in 600000t/a heavy oil catalytic cracking[J]. Petroleum Processing and Petrochemicals, 1996, 27(9): 13-19. | |
60 | Qian W Z, Wei F. Rector technology for methanol to aromatics[M]//Multiphase Reactor Engineering for Clean and Low-Carbon Energy Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017: 295-311. |
61 | 骞伟中, 魏飞, 王垚, 等. 多段流化床技术用于多相催化与纳米材料合成过程[J]. 化工学报, 2010, 61(9): 2186-2191. |
Qian W Z, Wei F, Wang Y, et al. Application of multistage fluidized bed in heterogeneous catalysis and nano-material synthesis[J]. CIESC Journal, 2010, 61(9): 2186-2191. | |
62 | Diao S G, Qian W Z, Luo G H, et al. Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor[J]. Applied Catalysis A: General, 2005, 286(1): 30-35. |
63 | 林世雄. 石油炼制工程[M]. 3版. 北京: 石油工业出版社, 2000. |
Lin S X. Petroleum Refining Engineering[M]. 3rd ed. Beijing: Petroleum Industry Press, 2000. | |
64 | Wang T, Tang X P, Huang X F, et al. Conversion of methanol to aromatics in fluidized bed reactor[J]. Catalysis Today, 2014, 233: 8-13. |
65 | Chen Z H, Hou Y L, Song W L, et al. High-yield production of aromatics from methanol using a temperature-shifting multi-stage fluidized bed reactor technology[J]. Chemical Engineering Journal, 2019, 371: 639-646. |
66 | Chen Z H, Hou Y L, Yang Y F, et al. A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics[J]. Chemical Engineering Science, 2019, 204: 1-8. |
67 | Yang Y F, Hou Y L, Chen Z H, et al. Enhanced production of aromatics from propane with a temperature-shifting two-stage fluidized bed reactor[J]. RSC Advances, 2019, 9(45): 26532-26536. |
68 | Su C, Qian W Z, Xie Q, et al. Conversion of methanol with C5—C6 hydrocarbons into aromatics in a two-stage fluidized bed reactor[J]. Catalysis Today, 2016, 264: 63-69. |
69 | Zheng A Q, Zhao Z L, Chang S, et al. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production[J]. Green Chemistry, 2014, 16(5): 2580. |
70 | Song C, Liu K F, Zhang D Z, et al. Effect of cofeeding n-butane with methanol on aromatization performance and coke formation over a Zn loaded ZSM-5/ZSM-11 zeolite[J]. Applied Catalysis A: General, 2014, 470: 15-23. |
71 | Xue Y F, Li J F, Wang S, et al. Co-reaction of methanol with butene over a high-silica H-ZSM-5 catalyst[J]. Journal of Catalysis, 2018, 367: 315-325. |
72 | Chen Y Y, Zhao X H, Qin Z F, et al. Insight into the methylation of alkenes and aromatics with methanol over zeolite catalysts by linear scaling relations[J]. The Journal of Physical Chemistry C, 2020, 124(25): 13789-13798. |
73 | 骞伟中, 陈兆辉, 侯一林, 等. 基于甲醇制芳烃的三段流化床的连续反应再生系统及方法: 108993327B[P]. 2020-09-15. |
Qian W Z, Chen Z H, Hou Y L, et al. Continuous reaction regeneration system and method based on three stage fluidized bed for aromatic hydrocarbon production from methanol: 108993327B[P]. 2020-09-15. | |
74 | 骞伟中, 陈兆辉, 侯一林, 等. 分区分功能将甲醇转化为芳烃的流化床装置及方法: 109701458B[P]. 2020-12-01. |
Qian W Z, Chen Z H, Hou Y L, et al. Separation function fluidized bed unit and method for converting methanol to aromatics: 109701458B[P]. 2020-12-01. | |
75 | 张丹, 杨敏博, 冯霄, 等. 反应器级数对甲醇制芳烃过程的影响分析[J]. 化工进展, 2020, 39(9): 3556-3562. |
Zhang D, Yang M B, Feng X, et al. Effects of reactor stages on energy and economic performance of methanol to aromatics process[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3556-3562. | |
76 | 张丹, 杨敏博, 冯霄. 循环流化床甲醇制芳烃分离工艺的模拟与改进[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 704-710. |
Zhang D, Yang M B, Feng X. Simulation and improvement of separation process for aromatic hydrocarbons produced from methanol using circulating fluidized bed reactor[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(5): 704-710. | |
77 | 骞伟中, 侯一林, 杨逸风. 将C~C非芳烃类转化为芳烃的催化剂, 制备方法及应用: 201910449989. 7[P]. 2020-09-29. |
Qian W Z, Hou Y L, Yang Y F. A catalyst for the conversion of C—C from non-aromatics to aromatics, preparation method and application: 201910449989. 7[P]. 2020-09-29. | |
78 | 骞伟中, 侯一林, 崔超婕, 等. 一种将烷烃转化为芳烃的催化剂、制备方法及使用方法: 111530493B[P]. 2021-11-02. |
Qian W Z, Hou Y L, Cui C J, et al. A catalyst for converting alkane to aromatics, preparation method and application method: 111530493B[P]. 2021-11-02. |
[1] | 刘维桥1,雷卫宁1,尚通明1,李卫华1,周全法1,王恒强2,任 杰2. Zn对HZSM-5分子筛催化剂物化及甲醇芳构化反应性能的影响 [J]. CIESC Journal, 2011, 30(9): 1967-. |
[2] | 刘维桥1,雷卫宁1,尚通明1,陈旭红1,戴文娟1,王恒强2,任 杰2. Ga改性的HZSM-5分子筛甲醇芳构化催化反应性能[J]. CIESC Journal, 2011, 30(12): 2637-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||