化工学报 ›› 2021, Vol. 72 ›› Issue (12): 5975-6001.DOI: 10.11949/0438-1157.20211085
收稿日期:
2021-08-02
修回日期:
2021-10-14
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
孙晓明,周道金
作者简介:
孙晓明(1976—),男,博士,教授,基金资助:
Xiaoming SUN(),Qihao SHA,Chenwei WANG,Daojin ZHOU()
Received:
2021-08-02
Revised:
2021-10-14
Online:
2021-12-05
Published:
2021-12-22
Contact:
Xiaoming SUN,Daojin ZHOU
摘要:
近年来,随着能源需求与日俱增,化石燃料的燃烧造成的温室效应使得地球气候变得更加恶劣,如何有效实现碳减排成为各国科学家的研究重点。将二氧化碳转化为绿色液体燃料(如甲醇)是一个重要方向。通过甲醇合成(MS)实现碳捕获,再在需要能量时进行甲醇水蒸气重整(MSR)制备氢气,实现二氧化碳的闭路循环和氢能的储存,因此MSR反应具有很高的研究价值。在众多应用于甲醇水蒸气重整的催化剂中,Cu基催化剂因其价格低廉和高活性等优点受到广泛关注。综述了Cu基催化剂在甲醇水蒸气重整中的研究进展,包括机理探索,催化剂优化及未来的发展方向,提出铜基催化剂中铜的高分散、价态调控和复合氧化物与铜的协同是性能优化的关键。
中图分类号:
孙晓明, 沙琪昊, 王陈伟, 周道金. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975-6001.
Xiaoming SUN, Qihao SHA, Chenwei WANG, Daojin ZHOU. Application of copper-based catalysts for hydrogen production in methanol steam reforming[J]. CIESC Journal, 2021, 72(12): 5975-6001.
①在纯O2 400℃条件下煅烧1 h后再进行反应;②在纯H2 300℃条件下预还原1 h后再进行反应;③在纯H2 400℃条件下预还原1 h后再进行反应。
(25) (a) 基于Jiang等、Peppley等、Iwasa等研究的甲醇水蒸气重整催化循环,包括不同种类的反应性表面位点 A ()和B ()[39];(b) 经由CH2O中间体的MSR反应网络[44];(c) 还原的CuO-CeO2在MSR反应中的原位红外谱图[45];(d) 还原的CuO-CeO2-I在MSR反应中的原位红外谱图[45]
null①在纯O2 400℃条件下煅烧1 h后再进行反应;②在纯H2 300℃条件下预还原1 h后再进行反应;③在纯H2 400℃条件下预还原1 h后再进行反应。
35 | Jeong H, Kim K I, Kim T H, et al. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst[J]. Journal of Power Sources, 2006, 159(2): 1296-1299. |
36 | Peppley B A, Amphlett J C, Kearns L M, et al. Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts (Part 2): A comprehensive kinetic model[J]. Applied Catalysis A: General, 1999, 179(1/2): 31-49. |
37 | Breen J P, Ross J R H. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts[J]. Catalysis Today, 1999, 51(3/4): 521-533. |
38 | Shishido T, Yamamoto Y, Morioka H, et al. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: steam reforming and oxidative steam reforming[J]. Journal of Molecular Catalysis A: Chemical, 2007, 268(1/2): 185-194. |
39 | Frank B, Jentoft F C, Soerijanto H, et al. Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics[J]. Journal of Catalysis, 2007, 246(1): 177-192. |
40 | Zhang R, Sun Y H, Peng S Y. In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst[J]. Fuel, 2002, 81(11/12): 1619-1624. |
41 | Lin S, Johnson R S, Smith G K, et al. Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies[J]. Physical Chemistry Chemical Physics, 2011, 13(20): 9622-9631. |
42 | Papavasiliou J, Avgouropoulos G, Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 490-496. |
43 | Gu X K, Li W X. First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111)[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21539-21547. |
44 | Wang S S, Gu X K, Su H Y, et al. First-principles and microkinetic simulation studies of the structure sensitivity of Cu catalyst for methanol steam reforming[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10811-10819. |
45 | Chen Y, Li S T, Lv S, et al. A novel synthetic route for MOF-derived CuO-CeO2 catalyst with remarkable methanol steam reforming performance[J]. Catalysis Communications, 2021, 149: 106215. |
46 | Wachs I E, Madix R J. The oxidation of H2CO on a copper(110) surface[J]. Surface Science, 1979, 84(2): 375-386. |
1 | Cai W J, Borlace S, Lengaigne M, et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014, 4(2): 111-116. |
2 | Massondelmotte V. Towards the IPCC special report on global warming of 1.5℃[C]//Egu General Assembly Conference, Austria, 2017. |
3 | Tong D, Zhang Q, Zheng Y X, et al. Committed emissions from existing energy infrastructure jeopardize 1.5℃ climate target[J]. Nature, 2019, 572(7769): 373-377. |
4 | Bednar J, Obersteiner M, Baklanov A, et al. Operationalizing the net-negative carbon economy[J]. Nature, 2021, 596(7872): 377-383. |
5 | Jacobson M Z, Colella W G, Golden D M. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308(5730): 1901-1905. |
6 | Wulf C, Reuß M, Grube T, et al. Life cycle assessment of hydrogen transport and distribution options[J]. Journal of Cleaner Production, 2018, 199: 431-443. |
7 | Kawamura Y, Ogura N, Igarashi A. Hydrogen production by methanol steam reforming using microreactor[J]. Journal of the Japan Petroleum Institute, 2013, 56(5): 288-297. |
8 | Iulianelli A, Ribeirinha P, Mendes A, et al. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review[J]. Renewable and Sustainable Energy Reviews,2014, 29: 355-368. |
9 | Shih C F, Zhang T, Li J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
10 | Frei M S, Mondelli C, Short M I M, et al. Methanol as a hydrogen carrier: kinetic and thermodynamic drivers for its CO2-based synthesis and reforming over heterogeneous catalysts[J]. ChemSusChem, 2020, 13(23):6330-6337. |
11 | Wu C Y, Lin L L, Liu J J, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation[J]. Nature Communications, 2020, 11:5767. |
12 | 舟丹.“液体阳光”是实现低碳能源的主要途径[J]. 中外能源, 2020,25(7):24. |
Zhou D. “Liquid sunlight” is the main way to realize low-carbon energy[J]. Sino-Globa Energy,2020,25(7):24. | |
13 | Lin L L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83. |
14 | Sun Z, Sun Z Q. Hydrogen generation from methanol reforming for fuel cell applications: a review[J]. Journal of Central South University, 2020, 27(4): 1074-1103. |
15 | 陆晓如.李灿:太阳燃料值得期待[J]. 中国石油石化, 2019(7): 17-19, 16. |
Lu X R.Li Can:solar fuel worth looking forward to[J]. China Petrochem, 2019(7): 17-19, 16. | |
16 | 王芳.用“液态阳光”将风电存起来、送出去[J]. 风能,2021(1): 24-25. |
Wang F. Use “liquid sunlight” to store wind power and send it out[J]. Wind Energy,2021(1): 24-25. | |
17 | Yong S T, Ooi C W, Chai S P, et al. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9541-9552. |
18 | Xu X H, Shuai K P, Xu B. Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen[J]. Catalysts, 2017, 7(6): 183. |
19 | Takezawa N, Iwasa N. Steam reforming and dehydrogenation of methanol: difference in the catalytic functions of copper and group Ⅷ metals[J]. Catalysis Today, 1997, 36(1):45-56. |
20 | Iwasa N, Takezawa N. New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol[J]. Topics in Catalysis, 2003, 22(3/4): 215-224. |
21 | Iwasa N, Mayanagi T, Ogawa N, et al. New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol[J]. Catalysis Letters, 1998, 54(3): 119-123. |
22 | Iwasa N, Masuda S, Ogawa N, et al. Steam reforming of methanol over Pd/ZnO: effect of the formation of PdZn alloys upon the reaction[J]. Applied Catalysis A: General, 1995, 125(1): 145-157. |
23 | Hong X L, Ren S Z. Selective hydrogen production from methanol oxidative steam reforming over Zn-Cr catalysts with or without Cu loading[J]. International Journal of Hydrogen Energy, 2008, 33(2): 700-708. |
24 | Cao W Q, Chen G W, Li S L, et al. Methanol-steam reforming over a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst[J]. Chemical Engineering Journal, 2006, 119(2/3): 93-98. |
25 | Sá S, Silva H, Brandão L, et al. Catalysts for methanol steam reforming—a review[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 43-57. |
26 | Iwasa N, Kudo S, Takahashi H, et al. Highly selective supported Pd catalysts for steam reforming of methanol[J]. Catalysis Letters, 1993, 19(2/3): 211-216. |
27 | Shokrani R, Haghighi M, Jodeiri N, et al. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13141-13155. |
28 | Agrell J, Birgersson H, Boutonnet M, et al. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3[J]. Journal of Catalysis, 2003, 219(2): 389-403. |
29 | Santacesaria E, Carrá S. Kinetics of catalytic steam reforming of methanol in a CSTR reactor[J]. Applied Catalysis, 1983, 5(3): 345-358. |
30 | Pour V, Bartoň J, Benda A. Kinetics of catalyzed reaction of methanol with water vapour[J]. Collection of Czechoslovak Chemical Communications, 1975, 40(10): 2923-2934. |
31 | Lwin Y, Daud W R W, Mohamad A B, et al. Hydrogen production from steam-methanol reforming: thermodynamic analysis[J]. International Journal of Hydrogen Energy, 2000, 25(1): 47-53. |
32 | Amphlett J C, Evans M J, Mann R F, et al. Hydrogen production by the catalytic steam reforming of methanol (Part 2): Kinetics of methanol decomposition using girdler G66B catalyst[J]. The Canadian Journal of Chemical Engineering, 2010, 63(4): 605-611. |
33 | Takahashi K, Takezawa N, Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Applied Catalysis, 1982, 2(6): 363-366. |
34 | Jiang C J, Trimm D L, Wainwright M S, et al. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst[J]. Applied Catalysis A: General, 1993, 97(2): 145-158. |
47 | McCabe R W, DiMaggio C L, Madix R J. Adsorption and reactions of acetaldehyde on Pt(S)-[6(111)× (100)][J]. The Journal of Physical Chemistry, 1985, 89(5): 854-861. |
48 | Shekhar R, Barteau M A. Structure sensitivity of alcohol reactions on (110) and (111) palladium surfaces[J]. Catalysis Letters, 1995, 31(2/3): 221-237. |
49 | Davis J L, Barteau M A. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111)[J]. Surface Science, 1990, 235(2/3): 235-248. |
50 | Herdem M S, Sinaki M Y, Farhad S, et al. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems[J]. International Journal of Energy Research, 2019, 43(10): 5076-5105. |
51 | Ranjekar A M, Yadav G D. Steam reforming of methanol for hydrogen production: a critical analysis of catalysis, processes, and scope[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 89-113. |
52 | Hansen P L. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals[J]. Science, 2002, 295(5562): 2053-2055. |
53 | Wang S S, Su H Y, Gu X K, et al. Differentiating intrinsic reactivity of copper, copper-zinc alloy, and copper/zinc oxide interface for methanol steam reforming by first-principles theory[J]. The Journal of Physical Chemistry C, 2017, 121(39): 21553-21559. |
54 | Yang H H, Chen Y Y, Cui X J, et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angewandte Chemie International Edition, 2018, 57(7): 1836-1840. |
55 | Das D, Llorca J, Dominguez M, et al. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. International Journal of Hydrogen Energy, 2015, 40(33): 10463-10479. |
56 | Turco M, Bagnasco G, Costantino U, et al. Production of hydrogen from oxidative steam reforming of methanol (I): Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor[J]. Journal of Catalysis, 2004, 228(1): 43-55. |
57 | Oguchi H, Kanai H, Utani K, et al. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts[J]. Applied Catalysis A: General, 2005, 293: 64-70. |
58 | Günter M M, Ressler T, Bems B, et al. Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis[J]. Catalysis Letters, 2001, 71(1/2): 37-44. |
59 | Klier K. Methanol synthesis[M]//Advances in Catalysis. Amsterdam: Elsevier, 1982: 243-313. |
60 | Chinchen G C, Waugh K C, Whan D A. The activity and state of the copper surface in methanol synthesis catalysts[J]. Applied Catalysis, 1986, 25(1/2): 101-107. |
61 | Burch R, Golunski S E, Spencer M S. The role of copper and zinc oxide in methanol synthesis catalysts[J]. Journal of the Chemical Society, Faraday Transactions, 1990, 86(15): 2683. |
62 | Spencer M S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction[J]. Topics in Catalysis, 1999, 8(3/4): 259-266. |
63 | Nakamura J, Choi Y, Fujitani T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts[J]. Topics in Catalysis, 2003, 22(3/4): 277-285. |
64 | Topsøe N Y, Topsøe H. On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts[J]. Topics in Catalysis, 1999, 8(3/4): 267-270. |
65 | Grunwaldt J D, Molenbroek A M, Topsøe N Y, et al. In situ investigations of structural changes in Cu/ZnO catalysts[J]. Journal of Catalysis, 2000, 194(2): 452-460. |
66 | Kasatkin I, Kurr P, Kniep B, et al. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. Angewandte Chemie International Edition, 2007, 46(38): 7324-7327. |
67 | Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. |
68 | Zeng S H, Zhang W L, Guo S L, et al. Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of carbon monoxide[J]. Catalysis Communications, 2012, 23: 62-66. |
69 | Yang S Q, Zhou F, Liu Y J, et al. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7252-7261. |
70 | Yao X J, Gao F, Yu Q, et al. NO reduction by CO over CuO-CeO2 catalysts: effect of preparation methods[J]. Catalysis Science & Technology, 2013, 3(5): 1355-1366. |
71 | Li G S, Li L P, Zheng J. Understanding the defect chemistry of oxide nanoparticles for creating new functionalities: a critical review[J]. Science China Chemistry, 2011, 54(6): 876-886. |
72 | Varmazyari M, Khani Y, Bahadoran F, et al. Hydrogen production employing Cu(BDC) metal-organic framework support in methanol steam reforming process within monolithic micro-reactors[J]. International Journal of Hydrogen Energy, 2021, 46(1): 565-580. |
73 | Baneshi J, Haghighi M, Jodeiri N, et al. Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications[J]. Energy Conversion and Management, 2014, 87: 928-937. |
74 | Qiao W J, Yang S Q, Zhang L, et al. Performance of Cu-Ce/M-Al (M = Mg, Ni, Co, Zn) hydrotalcite derived catalysts for hydrogen production from methanol steam reforming[J]. International Journal of Energy Research, 2021, 45(9): 12773-12783. |
75 | Ribeirinha P, Mateos-Pedrero C, Boaventura M, et al. CuO/ZnO/Ga2O3 catalyst for low temperature MSR reaction: synthesis, characterization and kinetic model[J]. Applied Catalysis B: Environmental, 2018, 221: 371-379. |
76 | Ruano D, Cored J, Azenha C, et al. Dynamic structure and subsurface oxygen formation of a working copper catalyst under methanol steam reforming conditions: an in situ time-resolved spectroscopic study[J]. ACS Catalysis, 2019, 9(4): 2922-2930. |
77 | Tong W Y, West A, Cheung K, et al. Dramatic effects of gallium promotion on methanol steam reforming Cu-ZnO catalyst for hydrogen production: formation of 5 Å copper clusters from Cu-ZnGaOx[J]. ACS Catalysis, 2013, 3(6): 1231-1244. |
78 | Chang C C, Wang J W, Chang C T, et al. Effect of ZrO2 on steam reforming of methanol over CuO/ZnO/ZrO2/Al2O3 catalysts[J]. Chemical Engineering Journal, 2012, 192: 350-356. |
79 | Matsumura Y. Stabilization of Cu/ZnO/ZrO2 catalyst for methanol steam reforming to hydrogen by coprecipitation on zirconia support[J]. Journal of Power Sources, 2013, 238: 109-116. |
80 | Patel S, Pant K K. Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol[J]. Journal of Porous Materials, 2006, 13(3/4): 373-378. |
81 | Mateos-Pedrero C, Azenha C, Pacheco Tanaka D A, et al. The influence of the support composition on the physicochemical and catalytic properties of Cu catalysts supported on zirconia-alumina for methanol steam reforming[J]. Applied Catalysis B: Environmental, 2020, 277:119243. |
82 | Sanches S G, Flores J H, Da Silva M I P. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming[J]. Molecular Catalysis, 2018, 454: 55-62. |
83 | Ploner K, Schlicker L, Gili A, et al. Reactive metal-support interaction in the Cu-In2O3 system: intermetallic compound formation and its consequences for CO2-selective methanol steam reforming[J]. Science and Technology of Advanced Materials, 2019, 20(1): 356-366. |
84 | Lu P J, Cai F F, Zhang J, et al. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 791-798. |
85 | Kuo M T, Chen Y Y, Hung W Y, et al. Synthesis of mesoporous CuFe/silicates catalyst for methanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14416-14423. |
86 | Khani Y, Bahadoran F, Safari N, et al. Hydrogen production from steam reforming of methanol over Cu-based catalysts: the behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11824-11837. |
87 | Hwang B Y, Sakthinathan S, Chiu T W. Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2848-2856. |
88 | Shen J P, Song C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catalysis Today, 2002, 77(1/2): 89-98. |
89 | Hughes R. Deactivation of Catalysts[M].London Orlando: Academic Press, 1984. |
90 | Kurtz M, Wilmer H, Genger T, et al. Deactivation of supported copper catalysts for methanol synthesis[J]. Catalysis Letters, 2003, 86(1/2/3): 77-80. |
91 | Zhang X R, Shi P F. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194(1/2): 99-105. |
92 | Choi Y, Stenger H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(4): 259-269. |
93 | Thurgood C P, Amphlett J C, Mann R F, et al. Deactivation of Cu/ZnO/Al2O3 catalyst: evolution of site concentrations with time[J]. Topics in Catalysis, 2003, 22(3/4): 253-259. |
94 | Liu Y Y, Hayakawa T, Suzuki K, et al. Highly active copper/ceria catalysts for steam reforming of methanol[J]. Applied Catalysis A: General, 2002, 223(1/2): 137-145. |
95 | Twigg M V, Spencer M S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis[J]. Topics in Catalysis, 2003, 22(3/4): 191-203. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[4] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[5] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[6] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[7] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[8] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[9] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[10] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[11] | 宋悦, 张启成, 彭文朝, 李阳, 张凤宝, 范晓彬. MoS2基单原子催化剂的合成及其在电催化中的应用[J]. 化工学报, 2023, 74(2): 535-545. |
[12] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[13] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[14] | 戚新刚, 路利波, 陈渝楠, 葛志伟, 郭烈锦. 造纸黑液超临界水气化制氢与高附加值化学品回收研究进展[J]. 化工学报, 2022, 73(8): 3338-3354. |
[15] | 徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||