1 |
Zhang X C, Jiang D X, Han T, et al. Rotating machinery fault diagnosis for imbalanced data based on fast clustering algorithm and support vector machine[J]. Journal of Sensors, 2017, 2017: 8092691.
|
2 |
商亮亮, 陆智林, 文传博, 等. 基于规范变量残差的化工过程微小故障检测与诊断[J]. 控制理论与应用, 2021, 38(8): 1247-1256.
|
|
Shang L L, Lu Z L, Wen C B, et al. Canonical residual based incipient fault detection and diagnosis for chemical process[J]. Control Theory & Applications, 2021, 38(8): 1247-1256.
|
3 |
Chen H T, Jiang B, Zhang T Y, et al. Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems[J]. Neurocomputing, 2020, 396: 429-437.
|
4 |
Taqvi S A A, Zabiri H, Tufa L D, et al. A review on data-driven learning approaches for fault detection and diagnosis in chemical processes[J]. ChemBioEng Reviews, 2021, 8(3): 239-259.
|
5 |
Zhu J L, Ge Z Q, Song Z H, et al. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data[J]. Annual Reviews in Control, 2018, 46: 107-133.
|
6 |
徐静, 王振雷, 王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663.
|
|
Xu J, Wang Z L, Wang X. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections[J]. CIESC Journal, 2020, 71(12): 5655-5663.
|
7 |
Liu J H, Qu F M, Hong X W, et al. A small-sample wind turbine fault detection method with synthetic fault data using generative adversarial nets[J]. IEEE Transactions on Industrial Informatics, 2019, 15(7): 3877-3888.
|
8 |
胡云鹏, 陈焕新, 周诚, 等. 基于主元分析法的冷水机组传感器故障检测效率分析[J]. 化工学报, 2012, 63: 85-88.
|
|
Hu Y P, Chen H X, Zhou C, et al. Analysis of sensor fault detection in chiller based on PCA method[J]. CIESC Journal, 2012, 63: 85-88.
|
9 |
Kano M, Hasebe S, Hashimoto I, et al. A new multivariate statistical process monitoring method using principal component analysis[J]. Computers & Chemical Engineering, 2001, 25(7/8): 1103-1113.
|
10 |
Chen Z W, Yang C H, Peng T, et al. A cumulative canonical correlation analysis-based sensor precision degradation detection method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6321-6330.
|
11 |
Liu Y Q, Liu B, Zhao X J, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478-6486.
|
12 |
Tong C D, Lan T, Yu H Z, et al. Distributed partial least squares based residual generation for statistical process monitoring[J]. Journal of Process Control, 2019, 75: 77-85.
|
13 |
Jia Q L, Zhang Y W. Quality-related fault detection approach based on dynamic kernel partial least squares[J]. Chemical Engineering Research and Design, 2016, 106: 242-252.
|
14 |
姚林, 张岩. 基于自适应混合核典型变量分析的工业过程质量相关故障检测[J]. 控制与决策, 2021, 36(4): 801-807.
|
|
Yao L, Zhang Y. Quality-related fault detection for industrial processes based on adaptive mixed kernel canonical variable analysis[J]. Control and Decision, 2021, 36(4): 801-807.
|
15 |
Cao Y P, Yu L, Deng X G, et al. Variable sub-region canonical variate analysis for dynamic process monitoring[J]. IEEE Access, 2020, 8: 37775-37789.
|
16 |
Pilario K E S, Cao Y. Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5308-5315.
|
17 |
Pilario K E S, Cao Y, Shafiee M. Incipient fault detection, diagnosis, and prognosis using canonical variate dissimilarity analysis[J].Computer Aided Chemical Engineering, 2019: 1195-1200.
|
18 |
Pilario K E S, Cao Y, Shafiee M. Mixed kernel canonical variate dissimilarity analysis for incipient fault monitoring in nonlinear dynamic processes[J]. Computers & Chemical Engineering, 2019, 123: 143-154.
|
19 |
Yu W K, Zhao C H. Low-rank characteristic and temporal correlation analytics for incipient industrial fault detection with missing data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6337-6346.
|
20 |
王宝祥, 潘宏侠. 基于分时段规范变量残差分析的高速自动机动态特性监测[J]. 振动与冲击, 2019, 38(20): 90-96.
|
|
Wang B X, Pan H X. Dynamic performance monitoring of high-speed automata based on phase-partitioned canonical variate dissimilarity analysis[J]. Journal of Vibration and Shock, 2019, 38(20): 90-96.
|
21 |
Wu P, Ferrari R M G, Liu Y C, et al. Data-driven incipient fault detection via canonical variate dissimilarity and mixed kernel principal component analysis[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5380-5390.
|
22 |
Tang Q, Liu Y, Chai Y, et al. Dynamic process monitoring based on canonical global and local preserving projection analysis[J]. Journal of Process Control, 2021, 106: 221-232.
|
23 |
邓晓刚, 田学民. 基于鲁棒规范变量分析的故障诊断方法[J]. 控制与决策, 2008, 23(4): 415-419.
|
|
Deng X G, Tian X M. Fault diagnosis method based on robust canonical variate analysis[J]. Control and Decision, 2008, 23(4): 415-419.
|
24 |
Han X J, Jiang J, Xu A D, et al. Fault detection of pneumatic control valves based on canonical variate analysis[J]. IEEE Sensors Journal, 2021, 21(12): 13603-13615.
|
25 |
Juricek B C, Seborg D E, Larimore W E. Fault detection using canonical variate analysis[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 458-474.
|
26 |
Odiowei P P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. Computer Aided Chemical Engineering, 2009, 27: 1557-1562.
|
27 |
Zhang Z, Deng X G. Anomaly detection using improved deep SVDD model with data structure preservation[J]. Pattern Recognition Letters, 2021, 148: 1-6.
|
28 |
王晓慧, 王延江, 邓晓刚, 等. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707-5716.
|
|
Wang X H, Wang Y J, Deng X G, et al. Industrial process fault detection using weighted deep support vector data description[J]. CIESC Journal, 2021, 72(11): 5707-5716.
|
29 |
Ni K Y, Bresson X, Chan T, et al. Local histogram based segmentation using the Wasserstein distance[J]. International Journal of Computer Vision, 2009, 84(1): 97-111.
|
30 |
Yang Q S, Yan P K, Zhang Y B, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348-1357.
|
31 |
Oh J H, Pouryahya M, Iyer A, et al. A novel kernel Wasserstein distance on Gaussian measures: an application of identifying dental artifacts in head and neck computed tomography[J]. Computers in Biology and Medicine, 2020, 120: 103731.
|
32 |
Deng X G, Deng J W. Incipient fault detection for chemical processes using two-dimensional weighted SLKPCA[J]. Industrial & Engineering Chemistry Research, 2019, 58(6): 2280-2295.
|