化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4217-4225.DOI: 10.11949/0438-1157.20220742
刘锋1(), 汪全1, 吴攀宇1,2, 魏国1,2, 何祥1
收稿日期:
2022-05-24
修回日期:
2022-06-20
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
刘锋
作者简介:
刘锋(1975—),男,博士,副教授,hyli@aust.edu.cn
基金资助:
Feng LIU1(), Quan WANG1, Panyu WU1,2, Guo WEI1,2, Xiang HE1
Received:
2022-05-24
Revised:
2022-06-20
Online:
2022-09-05
Published:
2022-10-09
Contact:
Feng LIU
摘要:
通过改变乳化分散机转速制备不同内相粒径的现场混装乳化炸药基质试样,使用调速振荡器模拟不同粒径基质试样在运输中受振动过程,测试受振动前后基质试样的内相粒径、微观结构、硝酸铵析出量和黏度变化,评估内相粒径对现场混装乳化炸药基质抗振动性能的影响。实验结果表明,随着内相液滴粒径增大,乳化炸药基质的抗振动性能减弱,内相粒径大于5.00 μm的基质更易受振动作用破乳析晶。内相粒径为9.47 μm的1#基质多分散指数(PDI)为2.78,在1个振动周期后明显破乳失稳,3个振动周期后的析晶量增大143%、黏度增大1.4倍,破乳严重且黏度过大不利于泵送;内相粒径为3.97 μm的5#基质PDI为1.88,3个振动周期后析晶量增大52%、黏度增大1.07倍,仍保持乳化炸药基质形态,有较好的稳定性。内相粒径过大的乳化炸药受振动后内部液滴易析晶导致性能降低,实际生产中应控制炸药基质制备时的内相粒径小于5.00 μm。
中图分类号:
刘锋, 汪全, 吴攀宇, 魏国, 何祥. 内相粒径对现场混装乳化炸药基质抗振动性能的影响[J]. 化工学报, 2022, 73(9): 4217-4225.
Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix[J]. CIESC Journal, 2022, 73(9): 4217-4225.
组成 | 质量分数/% |
---|---|
硝酸铵 | 72.5 |
硝酸钠 | 4.0 |
复合蜡 | 1.5 |
0#柴油 | 4.0 |
H2O | 16.0 |
Span-80 | 2.0 |
表1 现场混装乳化炸药基质的配方
Table 1 Formulation of on-site mixed emulsion explosive matrix
组成 | 质量分数/% |
---|---|
硝酸铵 | 72.5 |
硝酸钠 | 4.0 |
复合蜡 | 1.5 |
0#柴油 | 4.0 |
H2O | 16.0 |
Span-80 | 2.0 |
编号 | 转速/ (r·min-1) | D1/μm | 粒径分布 范围ΔL/μm | PDI | D2/μm | 粒径分布 范围ΔL/μm | PDI | D3/μm | 粒径分布 范围ΔL/μm | PDI | D4/μm | 粒径分布 范围ΔL /μm | PDI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | 600 | 9.47 | 3.80~30.20 | 2.78 | — | — | — | — | — | — | — | — | — |
2# | 800 | 9.01 | 3.31~26.30 | 2.59 | 15.95 | 5.01~60.26 | 3.21 | — | — | — | — | — | — |
3# | 1000 | 7.41 | 2.88~19.95 | 2.30 | 8.89 | 3.31~26.30 | 2.59 | 13.53 | 4.37~45.71 | 3.05 | — | — | — |
4# | 1200 | 4.97 | 1.91~11.48 | 1.93 | 7.81 | 2.88~22.91 | 2.56 | 10.84 | 4.37~34.67 | 2.80 | 13.89 | 4.37~45.71 | 3.06 |
5# | 1400 | 3.97 | 1.25~8.71 | 1.88 | 5.69 | 2.18~13.18 | 1.95 | 6.43 | 2.51~15.31 | 1.96 | 6.81 | 2.51~17.38 | 2.18 |
表2 现场混装乳化炸药基质内相粒径测试结果
Table 2 Test results of internal phase particle size of on-site mixed emulsion explosive matrix
编号 | 转速/ (r·min-1) | D1/μm | 粒径分布 范围ΔL/μm | PDI | D2/μm | 粒径分布 范围ΔL/μm | PDI | D3/μm | 粒径分布 范围ΔL/μm | PDI | D4/μm | 粒径分布 范围ΔL /μm | PDI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | 600 | 9.47 | 3.80~30.20 | 2.78 | — | — | — | — | — | — | — | — | — |
2# | 800 | 9.01 | 3.31~26.30 | 2.59 | 15.95 | 5.01~60.26 | 3.21 | — | — | — | — | — | — |
3# | 1000 | 7.41 | 2.88~19.95 | 2.30 | 8.89 | 3.31~26.30 | 2.59 | 13.53 | 4.37~45.71 | 3.05 | — | — | — |
4# | 1200 | 4.97 | 1.91~11.48 | 1.93 | 7.81 | 2.88~22.91 | 2.56 | 10.84 | 4.37~34.67 | 2.80 | 13.89 | 4.37~45.71 | 3.06 |
5# | 1400 | 3.97 | 1.25~8.71 | 1.88 | 5.69 | 2.18~13.18 | 1.95 | 6.43 | 2.51~15.31 | 1.96 | 6.81 | 2.51~17.38 | 2.18 |
编号 | 平均粒径D[3,2]/μm | 振动 时间/h | 消耗氢氧化钠溶液平均体积 | 硝酸铵 析出量M/g |
---|---|---|---|---|
1# | 9.47 | 0 | 6.35 | 0.36594 |
— | 24 | 8.43 | 0.48552 | |
— | 48 | 10.25 | 0.59070 | |
— | 72 | 15.46 | 0.89094 | |
2# | 9.01 | 0 | 4.63 | 0.26653 |
15.95 | 24 | 5.53 | 0.31840 | |
— | 48 | 6.48 | 0.37315 | |
— | 72 | 9.25 | 0.53307 | |
3# | 7.41 | 0 | 3.05 | 0.17577 |
8.89 | 24 | 3.34 | 0.19248 | |
13.53 | 48 | 4.64 | 0.26711 | |
— | 72 | 7.45 | 0.42933 | |
4# | 4.97 | 0 | 2.55 | 0.14695 |
7.81 | 24 | 3.46 | 0.19940 | |
10.84 | 48 | 3.77 | 0.21697 | |
13.89 | 72 | 4.84 | 0.27864 | |
5# | 3.97 | 0 | 2.32 | 0.13341 |
5.69 | 24 | 3.10 | 0.17865 | |
6.43 | 48 | 3.19 | 0.18355 | |
6.81 | 72 | 3.50 | 0.20170 |
表3 水溶法测试硝酸铵析出量的滴定结果
Table 3 Titration results of AN precipitation amount measured by water-soluble method
编号 | 平均粒径D[3,2]/μm | 振动 时间/h | 消耗氢氧化钠溶液平均体积 | 硝酸铵 析出量M/g |
---|---|---|---|---|
1# | 9.47 | 0 | 6.35 | 0.36594 |
— | 24 | 8.43 | 0.48552 | |
— | 48 | 10.25 | 0.59070 | |
— | 72 | 15.46 | 0.89094 | |
2# | 9.01 | 0 | 4.63 | 0.26653 |
15.95 | 24 | 5.53 | 0.31840 | |
— | 48 | 6.48 | 0.37315 | |
— | 72 | 9.25 | 0.53307 | |
3# | 7.41 | 0 | 3.05 | 0.17577 |
8.89 | 24 | 3.34 | 0.19248 | |
13.53 | 48 | 4.64 | 0.26711 | |
— | 72 | 7.45 | 0.42933 | |
4# | 4.97 | 0 | 2.55 | 0.14695 |
7.81 | 24 | 3.46 | 0.19940 | |
10.84 | 48 | 3.77 | 0.21697 | |
13.89 | 72 | 4.84 | 0.27864 | |
5# | 3.97 | 0 | 2.32 | 0.13341 |
5.69 | 24 | 3.10 | 0.17865 | |
6.43 | 48 | 3.19 | 0.18355 | |
6.81 | 72 | 3.50 | 0.20170 |
转速/(r·min-1) | 黏度/(mPa·s) | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
600 | 227316 | 266414 | 296763 | 317961 |
800 | 243021 | 270813 | 287871 | 304515 |
1000 | 254841 | 274852 | 290566 | 300681 |
1200 | 260745 | 273051 | 281611 | 287573 |
1400 | 264437 | 272443 | 280157 | 282285 |
表4 现场混装乳化炸药基质受运输振动后黏度变化
Table 4 Viscosity change of on-site mixed emulsion explosive matrix subjected to transport vibration
转速/(r·min-1) | 黏度/(mPa·s) | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
600 | 227316 | 266414 | 296763 | 317961 |
800 | 243021 | 270813 | 287871 | 304515 |
1000 | 254841 | 274852 | 290566 | 300681 |
1200 | 260745 | 273051 | 281611 | 287573 |
1400 | 264437 | 272443 | 280157 | 282285 |
1 | 汪旭光. 乳化炸药[M]. 2版. 北京: 冶金工业出版社, 2008. |
Wang X G. Emulsion Explosives[M]. Beijing: Metallurgical Industry Press, 2008. | |
2 | 王进. 乳胶体系的稳定性及破乳方法研究[D]. 南京: 南京理工大学, 2008. |
Wang J. Study on the stability and demulsification methods of explosive emulsion[D]. Nanjing: Nanjing University of Science and Technology, 2008. | |
3 | 李鑫, 查正清. 远程配送乳胶基质专用运输车的研制[J]. 工程爆破, 2014, 20(3): 40-42. |
Li X, Zha Z Q. Development of special transport vehicle for long-distance distribution of emulsion matrix[J]. Engineering Blasting, 2014, 20(3): 40-42. | |
4 | Califano V, Calabria R, Massoli P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions[J]. Fuel, 2014, 117: 87-94. |
5 | Hales R H, Cranney D H, Hurley E K, et al. Emulsion phase having improved stability: US6808573[P]. 2004-10-26. |
6 | Reynolds P A, McGillivray D J, Mata J P, et al. The stability of high internal phase emulsions at low surfactant concentration studied by small angle neutron scattering[J]. Journal of Colloid and Interface Science, 2010, 349(2): 544-553. |
7 | Masalova I, Tshilumbu N N, Mamedov E, et al. Effect of oil type on stability of high internal phase water-in-oil emulsions with super-cooled internal phase[J]. Chemical Engineering Communications, 2018, 205(1): 1-11. |
8 | 李洪伟, 桂继昌, 雷战, 等. 复合乳化剂对乳化炸药热安全性影响研究[J]. 安全与环境学报, 2021, 21(1): 133-138. |
Li H W, Gui J C, Lei Z, et al. Effect of the compound emulsifier on the thermal safety of the emulsion explosives[J]. Journal of Safety and Environment, 2021, 21(1): 133-138. | |
9 | 高圣涛, 王文丽, 方华, 等. 超声波作用下乳化炸药和乳胶基质的破乳现象试验研究[J]. 安徽理工大学学报(自然科学版), 2016, 36(1): 62-64. |
Gao S T, Wang W L, Fang H, et al. Research on demulsification of emulsion explosive and emulsion matrix under ultrasonic wave [J]. Journal of Anhui University of Science and Technology(Natural Science), 2016, 36(1): 62-64. | |
10 | 程奥, 何志伟, 王洋, 等. 油相材料对乳胶基质稳定性的影响[J]. 火工品, 2019(2): 35-38. |
Cheng A, He Z W, Wang Y, et al. Effect of oil phase material on storage stability of emulsion matrix[J]. Initiators & Pyrotechnics, 2019(2): 35-38. | |
11 | 吴红波. 动压作用下乳化炸药减敏机理研究[D]. 淮南: 安徽理工大学, 2011. |
Wu H B. Research on desensitization mechanism of emulsion explosive under dynamic pressure[D]. Huainan: Anhui University of Science & Technology, 2011. | |
12 | 闫国斌, 汪旭光, 王尹军. 乳化炸药微观结构对其宏观性能的影响分析[J]. 工程爆破, 2016, 22(5): 40-44. |
Yan G B, Wang X G, Wang Y J. Influence of microstructure of emulsion explosive on macro performance[J]. Engineering Blasting, 2016, 22(5): 40-44. | |
13 | 洪德凯. 轻型载货汽车振动分析与减振设计[D]. 淄博: 山东理工大学, 2020. |
Hong D K. Dynamic analysis and vibration suppression design of a light truck[D]. Zibo: Shandong University of Science and Technology, 2020. | |
14 | van den Pol E, Thies-Weesie D M E, Petukhov A V, et al. Influence of polydispersity on the phase behavior of colloidal goethite[J]. The Journal of Chemical Physics, 2008, 129(16): 164175. |
15 | 张阳, 汪旭光, 王阳, 等. 基于逾渗理论对乳胶基质老化过程的分析[J]. 化工学报, 2017, 68(7): 2938-2945. |
Zhang Y, Wang X G, Wang Y, et al. Aging analysis of emulsion explosive matrix based on percolation theory[J]. CIESC Journal, 2017, 68(7): 2938-2945. | |
16 | 张阳, 汪旭光, 王尹军, 等. 乳胶基质老化过程的结晶动力学研究[J]. 化工学报, 2018, 69(10): 4464-4470. |
Zhang Y, Wang X G, Wang Y J, et al. Crystallization kinetics of emulsion explosive matrix during aging process[J]. CIESC Journal, 2018, 69(10): 4464-4470. | |
17 | 宋家良. 乳化炸药的几何稳定性理论研究[J]. 煤矿爆破, 2005(4): 1-3. |
Song J L. A theoretical study on the geometry stability of emulsion explosive[J]. Coal Mine Blasting, 2005(4): 1-3. | |
18 | Mcclements D J. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(7): 611-649. |
19 | 王阳, 汪旭光, 陶铁军, 等. 乳化基质自然储存失稳机理研究[J]. 爆破, 2017, 34(2): 110-116, 126. |
Wang Y, Wang X G, Tao T J, et al. Instability mechanism of emulsion explosive matrix suffering long-time storage[J]. Blasting, 2017, 34(2): 110-116, 126. | |
20 | 刘杰, 徐志祥, 孔煜. 乳化炸药稳定性及其破乳机理研究[J]. 爆破器材, 2015, 44(6): 38-42. |
Liu J, Xu Z X, Kong Y. Storage stability and demulsion mechanism of emulsion explosives[J]. Explosive Materials, 2015, 44(6): 38-42. | |
21 | Masalova I, Kharatyan E, Tshilumbu N N. Effect of the type of the oil phase on stability of highly concentrated water-in-oil emulsions [J]. Colloid Journal, 2013, 75 (5): 579-585. |
22 | Foudazi R, Masalova I, Malkin A. The role of interdroplet interaction in the physics of highly concentrated emulsions[J]. Colloid Journal, 2010, 72: 74-92. |
23 | 滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009: 9, 16-18. |
Teng X R. Surface Physical Chemistry[M]. Beijing: Chemical Industry Press, 2009: 9, 16-18. | |
24 | 严应政, 李国华. 杨氏方程推导应用中的几个疑点及其它[J]. 西北建筑工程学院学报(自然科学版), 2001, 18(3): 89-94. |
Yan Y Z, Li G H. Several questionable points and others in derivation and use of Young's equation[J]. Journal of Northwestem Institute of Architecture Engineering, 2001, 18(3): 89-94. | |
25 | 张阳. 乳胶基质失稳过程的规律研究[D]. 北京: 北京科技大学, 2020. |
Zhang Y. Study on the evolution characteristic of emulsion explosive matrix during the aging process[D]. Beijing:University of Science and Technology Beijing, 2020. | |
26 | Bibette J, Leal-Calderon F, Schmitt V, et al. Emulsion Science[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. |
27 | 王阳. 现场混装乳化炸药基质远程配送稳定性研究[D]. 北京: 北京科技大学, 2020. |
Wang Y. The instability mechanism of emulsion matrices for remote distribution[D]. Beijing: University of Science and Technology Beijing, 2020. | |
28 | Tadros T F. An Introduction to Surfactants[M]. Walter: de Gruyter, 2014. |
29 | 吴攀宇, 刘锋, 魏国, 等. 动态挤压对现场混装乳化炸药稳定性的影响[J]. 含能材料, 2021, 29(12): 1160-1167. |
Wu P Y, Liu F, Wei G, et al. Influence of dynamic extrusion on stability of field mixed emulsion explosive[J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1160-1167. | |
30 | 魏国, 刘锋, 吴攀宇, 等. 振动作用对现场混装乳化炸药稳定性的影响[J]. 火炸药学报, 2022, 45(1): 90-96. |
Wei G, Liu F, Wu P Y, et al. Influence of vibration on the stability of on-site mixed emulsion explosive[J]. Chinese Journal of Explosives & Propellants, 2022, 45(1): 90-96. |
[1] | 张阳, 汪旭光, 王尹军, 汪泉, 吴红波. 乳胶基质老化过程的结晶动力学研究[J]. 化工学报, 2018, 69(10): 4464-4470. |
[2] | 张阳, 汪旭光, 王阳, 王尹军. 基于逾渗理论对乳胶基质老化过程的分析[J]. 化工学报, 2017, 68(7): 2938-2945. |
[3] | 吴秋洁, 陈相, 谭柳, 李敏, 徐森, 刘大斌. 结晶亚硝酸钠混入对乳化炸药安全性的影响[J]. 化工学报, 2017, 68(5): 2211-2215. |
[4] | 龚悦, 汪旭光, 何杰, 颜事龙, 程扬帆. 铝粉粒度对乳化炸药能量输出特性及热安定性的影响[J]. 化工学报, 2017, 68(4): 1721-1727. |
[5] | 程扬帆, 汪泉, 龚悦, 汤有富, 袁和平, 钱海, 沈兆武. MgH2型复合敏化储氢乳化炸药的制备及其爆轰性能[J]. 化工学报, 2017, 68(4): 1734-1739. |
[6] | 杜明燃, 汪旭光, 颜事龙. KCl含量对乳化炸药压力减敏的影响[J]. 化工学报, 2015, 66(12): 5179-5184. |
[7] | 解一超,韩志伟,解立峰. 含硝酸铈的乳化炸药爆轰的制备[J]. 化工进展, 2013, 32(02): 400-403. |
[8] | 王尹军;汪旭光;颜事龙. 乳化剂含量与乳化炸药压力减敏关系 [J]. CIESC Journal, 2005, 56(9): 1809-1815. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||