化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4226-4234.DOI: 10.11949/0438-1157.20220698
廖珊珊1(), 张少刚1(), 陶骏骏2, 刘家豪1, 汪金辉1
收稿日期:
2022-05-14
修回日期:
2022-06-23
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
张少刚
作者简介:
廖珊珊(1998—),女,硕士研究生,202030410067@ stu.shmtu.edu.cn
基金资助:
Shanshan LIAO1(), Shaogang ZHANG1(), Junjun TAO2, Jiahao LIU1, Jinhui WANG1
Received:
2022-05-14
Revised:
2022-06-23
Online:
2022-09-05
Published:
2022-10-09
Contact:
Shaogang ZHANG
摘要:
当前对于竖直向上屏障射流火的研究大多集中于顶棚射流,对于竖直向上射流火羽流撞击管道的研究相对较少。为研究竖直向上射流火羽流撞击管道的特征演化行为,基于燃烧学及流体力学基本原理,运用Fluent数值模拟软件,通过控制变量法对不同热释放速率、障碍管道直径及管壁-火源间距因素进行探究。研究表明障碍管道直径和管壁-火源间距对火焰高度和宽度均有一定程度的影响,且得到了基于Froude数的无量纲火焰高度表征模型。
中图分类号:
廖珊珊, 张少刚, 陶骏骏, 刘家豪, 汪金辉. 竖直射流火撞击障碍管道数值模拟分析[J]. 化工学报, 2022, 73(9): 4226-4234.
Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline[J]. CIESC Journal, 2022, 73(9): 4226-4234.
障碍管道数量 | 管道-火源距离H/m | 管道直径D1/m | 燃料泄漏速度u/(m/s) | 热释放速率 Q/kW |
---|---|---|---|---|
0 | — | — | 150~400 | 167.2~445.8 |
1 | 0.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.0 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.2 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.6 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.8 | 150~400 | 167.2~445.8 |
表1 模拟工况设置情况
Table1 Information of simulation tests
障碍管道数量 | 管道-火源距离H/m | 管道直径D1/m | 燃料泄漏速度u/(m/s) | 热释放速率 Q/kW |
---|---|---|---|---|
0 | — | — | 150~400 | 167.2~445.8 |
1 | 0.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.0 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.2 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.4 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.6 | 150~400 | 167.2~445.8 |
1 | 1.5 | 0.8 | 150~400 | 167.2~445.8 |
文献 | 燃料类型 | 喷射方向 | Fr | 火焰长度公式 |
---|---|---|---|---|
[ | 丙烷 | 竖直 | 80~1×105 | |
[ | 丙烷和乙烯 | 竖直 | 800~8×104 | |
[ | 液化石油气 | 竖直 | 150~4.5×105 | |
[ | 天然气 | 竖直 | 2.7×103~8.2×104 |
表2 目前关于竖直射流火焰长度的部分研究
Table 2 Some current studies on flame length of jet fire
文献 | 燃料类型 | 喷射方向 | Fr | 火焰长度公式 |
---|---|---|---|---|
[ | 丙烷 | 竖直 | 80~1×105 | |
[ | 丙烷和乙烯 | 竖直 | 800~8×104 | |
[ | 液化石油气 | 竖直 | 150~4.5×105 | |
[ | 天然气 | 竖直 | 2.7×103~8.2×104 |
1 | E.I.A.US.Annual energy outlook[R].Washington D.C.:U.S. Department of Energy, 2013. |
2 | Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
3 | 中国青年网. 广西防城港一化工厂管道泄漏引发火灾[Z/OL]. [2022-05-14].. |
China Youth Network. Fire caused by pipeline leakage at a chemical plant in Fangchenggang, Guangxi[Z/OL]. [2022-05-14].. | |
4 | 周魁斌, 刘娇艳, 蒋军成. 高压可燃气体泄漏动力学过程与喷射火热灾害分析[J]. 化工学报, 2018, 69(4): 1276-1287. |
Zhou K B, Liu J Y, Jiang J C. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J]. CIESC Journal, 2018, 69(4): 1276-1287. | |
5 | Kim J S, Yang W, Kim Y, et al. Behavior of buoyancy and momentum controlled hydrogen jets and flames emitted into the quiescent atmosphere[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 943-949. |
6 | Ab Aziz N S, Kasmani R M, Samsudin M D M, et al. Main geometrical features of horizontal buoyant jet fire and associated radiative fraction[J]. Process Safety Progress, 2019, 39: e12124. |
7 | Zukoski E E, Kubota T, Cetegen B. Entrainment in fire plumes[J]. Fire Safety Journal, 1981, 3(2): 107-121. |
8 | Heskestad G. Luminous heights of turbulent diffusion flames[J]. Fire Safety Journal, 1983, 5(2): 103-108. |
9 | Heskestad G. Turbulent jet diffusion flames: consolidation of flame height data[J]. Combustion and Flame, 1999, 118(1/2): 51-60. |
10 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
11 | Schefer R W, Houf W G, Bourne B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1332-1340. |
12 | 周魁斌, 蒋军成, 李国宝. 管道压力对天然气射流火热辐射灾害的影响[J]. 安全与环境学报, 2016, 16(5): 163-167. |
Zhou K B, Jiang J C, Li G B. Impact of the pipeline pressure on the thermal radiation hazards of the natural gas jet flame[J]. Journal of Safety and Environment, 2016, 16(5): 163-167. | |
13 | Mashhadimoslem H, Ghaemi A, Palacios A, et al. A new method for comparison thermal radiation on large-scale hydrogen and propane jet fires based on experimental and computational studies[J]. Fuel, 2020, 282: 118864. |
14 | Lv J, Zhang X L, Liu S X, et al. Flame morphology of horizontal jets under sub-atmospheric pressures: experiment, dimensional analysis and an integral model[J]. Fuel, 2022, 307: 121891. |
15 | Rengel B, Àgueda A, Pastor E, et al. Experimental and computational analysis of vertical jet fires of methane in normal and sub-atmospheric pressures[J]. Fuel, 2020, 265: 116878. |
16 | 尚峰举. 水平环境风作用下扩散射流火焰下洗及脱离行为研究[D]. 合肥: 中国科学技术大学, 2017. |
Shang F J. The downwash and detachment study of jet fire diffusion flame in cross-flow[D]. Hefei: University of Science and Technology of China, 2017. | |
17 | 王静舞. 横向风条件下射流扩散火焰形态与燃烧特性研究[D]. 合肥: 中国科学技术大学, 2017. |
Wang J W. Study of shapes and combustion characteristics of jet diffusion flames under crossflow[D]. Hefei: University of Science and Technology of China, 2017. | |
18 | 刘松涛,赵金龙,卫文彬,等. 隧道内不同间距双火源火灾实验及模拟研究[J].中国公路学报, 2022, 35(7): 193-202. |
Liu S T, Zhao J L, Wei W B,et al. Experiment and simulation study on double fire sources with different distances in tunnel[J]. Chinese Journal of Highways, 2022, 35(7): 193-202. | |
19 | 李博. 侧向风作用下的双火源相互作用燃烧特性研究[D]. 合肥: 中国科学技术大学, 2021. |
Li B. Interaction behaviors of two fire sources burning under cross wind[D]. Hefei: University of Science and Technology of China, 2021. | |
20 | Iyogun C O, Birouk M. Effect of fuel nozzle geometry on the stability of a turbulent jet methane flame[J]. Combustion Science and Technology, 2008, 180(12): 2186-2209. |
21 | Imamura T, Hamada S, Mogi T, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region[J]. International Journal of Hydrogen Energy, 2008, 33(13): 3426-3435. |
22 | Roberts T, Beckett H, Buckland I. Directed water deluge protection of liquefied petroleum gas vessels[C]// Institution of Chemical Engineers Symposium Series. Institution of Chemical Engineers, 2001: 193-212. |
23 | Wang Z H, Zhou K B, Zhang L, et al. Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate[J]. Process Safety and Environmental Protection, 2021, 147: 547-558. |
24 | Zhang X C, Hu L H, Zhu W, et al. Flame extension length and temperature profile in thermal impinging flow of buoyant round jet upon a horizontal plate[J]. Applied Thermal Engineering, 2014, 73(1): 15-22. |
25 | Zhang X C, Tao H W, Xu W B, et al. Flame extension lengths beneath an inclined ceiling induced by rectangular-source fires[J]. Combustion and Flame, 2017, 176: 349-357. |
26 | Zhang X C, Tao H W, Zhang Z J, et al. Temperature profile beneath an inclined ceiling induced by plume impingement of gas fuel jet flame[J]. Fuel, 2018, 223: 408-413. |
27 | Wang C, Ding L, Wan H X, et al. Experimental study of flame morphology and size model of a horizontal jet flame impinging a wall[J]. Process Safety and Environmental Protection, 2021, 147: 1009-1017. |
28 | 周梦雅, 周魁斌, 王朝, 等. 坑道限制条件下水平丙烷喷射火火焰行为研究[J]. 化工学报, 2022, 73(2): 960-971. |
Zhou M Y, Zhou K B, Wang C, et al. Flame behavior of horizontal propane jet fire in a pit[J]. CIESC Journal, 2022, 73(2): 960-971. | |
29 | Kashi E, Bahoosh M. Jet fire assessment in complex environments using computational fluid dynamics[J]. Brazilian Journal of Chemical Engineering, 2020, 37(1): 203-212. |
30 | 李玉星, 刘鹏, 耿晓茹, 等. 障碍物条件下的甲烷水平喷射火燃烧特性研究[J]. 油气田地面工程, 2019, 38(10): 7-13. |
Li Y X, Liu P, Geng X R, et al. Study on combustion characteristics of methane horizontal jet fire with obstacles[J]. Oil-Gasfield Surface Engineering, 2019, 38(10): 7-13. | |
31 | 吴月琼, 周魁斌, 黄梦源, 等. 储罐壁面限制条件下喷射火火焰行为[J]. 化工学报, 2021, 72(5): 2896-2904. |
Wu Y Q, Zhou K B, Huang M Y, et al. Flame behavior of jet fire confined by the tank wall[J]. CIESC Journal, 2021, 72(5): 2896-2904. | |
32 | Foroughi V, Palacios A, Barraza C, et al. Thermal effects of a sonic jet fire impingement on a pipe[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104449. |
33 | Wang Z, Zhou K, Liu M, et al. Lift-off behavior of horizontal subsonic jet flames impinging on a cylindrical surface[C]// Proceedings of the Ninth International Seminar on Fire and Explosion Hazards. Saint-Petersburg: Saint-Petersberg Polytechnic University Press, 2019: 831-841. |
34 | Laboureur D M, Gopalaswami N, Zhang B, et al. Experimental study on propane jet fire hazards: assessment of the main geometrical features of horizontal jet flames[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 355-364. |
35 | Palacios A, García W, Rengel B. Flame shapes and thermal fluxes for an extensive range of horizontal jet flames[J]. Fuel, 2020, 279: 118328. |
36 | 孔祥晓. 不同喷射方向湍流射流火焰撞壁行为特征研究[D]. 合肥: 中国科学技术大学, 2021. |
Kong X X. Research on the behavior characteristics of turbulent jet flame impinging on the wall with different jet directions[D]. Hefei: University of Science and Technology of China, 2021. | |
37 | Huang Y B, Li Y F, Dong B Y, et al. Predicting the main geometrical features of horizontal rectangular source fuel jet fires[J]. Journal of the Energy Institute, 2018, 91(6): 1153-1163. |
38 | Palacios A, Rengel B. Computational analysis of vertical and horizontal jet fires[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104096. |
39 | Armaly B F, Durst F, Pereira J C F, et al. Experimental and theoretical investigation of backward-facing step flow[J]. Journal of Fluid Mechanics, 1983, 127: 473. |
40 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
41 | Sonju O K, Hustad J. An experimental study of turbulent jet diffusion flames[J]. Norwegian Maritime Research, 1984, 4(12): 2-11. |
42 | Santos A, Costa M. Reexamination of the scaling laws for NO x emissions from hydrocarbon turbulent jet diffusion flames[J]. Combustion and Flame, 2005, 142(1/2): 160-169. |
43 | Kiran D Y, Mishra D P. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame[J]. Fuel, 2007, 86(10/11): 1545-1551. |
44 | 耿晓茹. 障碍物对天然气管道喷射火影响的实验及数值模拟研究[D]. 东营: 中国石油大学(华东), 2018. |
Geng X R. Experiment and numerical simulation of influence of obstacles on jet fire in natural gas pipelines[D]. Dongying: China University of Petroleum, 2018. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||