化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2409-2421.DOI: 10.11949/0438-1157.20240255
收稿日期:
2024-03-04
修回日期:
2024-05-11
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
谭宏博
作者简介:
秦晓巧(2000—),女,硕士研究生,3122103238@stu.xjtu.edu.cn
基金资助:
Xiaoqiao QIN(), Hongbo TAN(), Na WEN
Received:
2024-03-04
Revised:
2024-05-11
Online:
2024-07-25
Published:
2024-08-09
Contact:
Hongbo TAN
摘要:
低温空气分离设备是大型化工系统的高耗能环节,若与液态空气储能技术相结合,可有效平衡电网峰谷负荷,显著提高系统的经济效益。提出了一种储能式低温空分系统(ASU-ESG),利用谷电制取液态空气并储存,在峰电期内液态空气膨胀发电并参与低温精馏。此方案可有效降低系统在用电峰时的压缩负荷和电力成本,改善空分装置的负荷调节能力。研究结果表明,空气处理量为60000 m3/h的ASU-ESG系统的日均制氧压缩功比功耗为0.378 kW·h/m3,储能和释能过程氧提取率分别为89.46%和93.71%。相比常规ASU系统,该系统的谷时压缩负荷提高了28%,峰时压缩负荷降低了20%,可节约年度用电成本5.72%~6.88%,动态回收期仅为3.3~4.3年,全生命周期净现值可达(19714.6~28074.7)万元。本系统可平衡电网峰谷波动,并利用电价差显著提高系统的经济效益。
中图分类号:
秦晓巧, 谭宏博, 温娜. 储能式低温空分系统热力学与经济性分析[J]. 化工学报, 2024, 75(7): 2409-2421.
Xiaoqiao QIN, Hongbo TAN, Na WEN. Thermodynamic and economic analysis of air separation unit with energy storage and generation[J]. CIESC Journal, 2024, 75(7): 2409-2421.
图1 常规ASU系统(a)、ASU-ESG系统储能过程(b)和释能过程(c)流程图
Fig.1 Flow diagram of conventional ASU system (a), ASU-ESG system energy storage process (b) and energy release process (c)
对象 | 参数 | 数值 |
---|---|---|
纯化空气 | 温度 | 298.15 K [ |
压力 | 0.1013 MPa [ | |
氧气产品 | 纯度 | ≥99.6%(摩尔分数) [ |
氮气产品 | 纯度 | ≥99.999%(摩尔分数) |
CAC | 绝热效率 | 80% [ |
压比 | 1.4 | |
PAC | 绝热效率 | 80% |
压比 | 1.4 | |
BET | 增压端绝热效率 | 75% |
膨胀端等熵效率 | 78% | |
膨胀端出口带液量 | ≤3% | |
AT | 等熵效率 | 80% |
排气压力 | 0.55 MPa | |
LAT | 容积 | 120 m3 |
压力 | 0.55 MPa | |
LAP | 绝热效率 | 80% [ |
泵后压力 | 6 MPa | |
CACC/PACC/BETC | 进口水温 | 305.15 K [ |
CON | 最小换热温差 | ≥1 K [ |
MHX/SC | 最小换热温差 | ≥0.5 K |
HPC | 压力 | 0.55 MPa |
塔板数 | 30 | |
LPC | 压力 | 0.13 MPa [ |
塔板数 | 50 |
表1 ASU-ESG系统主要参数
Table 1 Main parameters of ASU-ESG system
对象 | 参数 | 数值 |
---|---|---|
纯化空气 | 温度 | 298.15 K [ |
压力 | 0.1013 MPa [ | |
氧气产品 | 纯度 | ≥99.6%(摩尔分数) [ |
氮气产品 | 纯度 | ≥99.999%(摩尔分数) |
CAC | 绝热效率 | 80% [ |
压比 | 1.4 | |
PAC | 绝热效率 | 80% |
压比 | 1.4 | |
BET | 增压端绝热效率 | 75% |
膨胀端等熵效率 | 78% | |
膨胀端出口带液量 | ≤3% | |
AT | 等熵效率 | 80% |
排气压力 | 0.55 MPa | |
LAT | 容积 | 120 m3 |
压力 | 0.55 MPa | |
LAP | 绝热效率 | 80% [ |
泵后压力 | 6 MPa | |
CACC/PACC/BETC | 进口水温 | 305.15 K [ |
CON | 最小换热温差 | ≥1 K [ |
MHX/SC | 最小换热温差 | ≥0.5 K |
HPC | 压力 | 0.55 MPa |
塔板数 | 30 | |
LPC | 压力 | 0.13 MPa [ |
塔板数 | 50 |
项目 | 低谷时段 | 平时段 | 高峰时段 |
---|---|---|---|
时间范围 | 23∶00~7∶00 | 7∶00~10∶00,15∶00~18∶00,21∶00~23∶00 | 10∶00~15∶00,18∶00~21∶00 |
ASU-ESG系统运行模式 | 储能模式 | 常规模式 | 释能模式 |
ASU-ESG系统每日运行时长 | 8 h | 8 h | 8 h |
表2 上海工业用电的峰谷时段[3]
Table 2 Peak and valley electricity periods in Shanghai industrials[3]
项目 | 低谷时段 | 平时段 | 高峰时段 |
---|---|---|---|
时间范围 | 23∶00~7∶00 | 7∶00~10∶00,15∶00~18∶00,21∶00~23∶00 | 10∶00~15∶00,18∶00~21∶00 |
ASU-ESG系统运行模式 | 储能模式 | 常规模式 | 释能模式 |
ASU-ESG系统每日运行时长 | 8 h | 8 h | 8 h |
参数 | 常规ASU系统 | ASU-ESG 系统储能过程 | ASU-ESG 系统释能过程 |
---|---|---|---|
氧气产品 | |||
产量/(m3/h) | 9649 | 9650 | 9649 |
纯度/% (摩尔分数) | 99.60 | 99.60 | 99.60 |
提取率/% | 91.53 | 89.46 | 93.71 |
氮气产品 | |||
产量/(m3/h) | 21910 | 21910 | 21910 |
纯度/% (摩尔分数) | 99.999 | 99.999 | 99.999 |
提取率/% | 55.47 | 52.80 | 58.42 |
压缩机功耗/kW | 3548 | 4542 | 2838 |
液态空气泵功耗/kW | — | — | 24 |
空气膨胀机输出功率/kW | — | — | 190 |
日均制氧压缩功比功耗/(kW·h/m3) | 0.368 | 0.471 | 0.294 |
表3 常规ASU系统和ASU-ESG系统精馏产品模拟结果
Table 3 Distillation product simulation results of conventional ASU and ASU-ESG systems
参数 | 常规ASU系统 | ASU-ESG 系统储能过程 | ASU-ESG 系统释能过程 |
---|---|---|---|
氧气产品 | |||
产量/(m3/h) | 9649 | 9650 | 9649 |
纯度/% (摩尔分数) | 99.60 | 99.60 | 99.60 |
提取率/% | 91.53 | 89.46 | 93.71 |
氮气产品 | |||
产量/(m3/h) | 21910 | 21910 | 21910 |
纯度/% (摩尔分数) | 99.999 | 99.999 | 99.999 |
提取率/% | 55.47 | 52.80 | 58.42 |
压缩机功耗/kW | 3548 | 4542 | 2838 |
液态空气泵功耗/kW | — | — | 24 |
空气膨胀机输出功率/kW | — | — | 190 |
日均制氧压缩功比功耗/(kW·h/m3) | 0.368 | 0.471 | 0.294 |
图3 常规ASU系统(a)、ASU-ESG系统储能过程(b)和释能过程(c)㶲流图
Fig.3 Exergy flow in conventional ASU system (a), ASU-ESG system energy storage process (b) and energy release process (c)
序号 | 峰电单价 | 谷电单价 | 平电单价 | 每月容量电价 | 峰谷价差/ (CNY/(kW·h)) |
---|---|---|---|---|---|
1 | 1.177 | 0.329 | 0.707 | 20 | 0.848 |
2 | 1.127 | 0.315 | 0.677 | 20 | 0.812 |
3 | 1.077 | 0.301 | 0.647 | 20 | 0.776 |
4 | 1.027 | 0.287 | 0.617 | 20 | 0.740 |
5 | 0.977 | 0.273 | 0.587 | 20 | 0.704 |
6 | 0.928 | 0.259 | 0.557 | 20 | 0.668 |
7 | 0.878 | 0.245 | 0.527 | 20 | 0.632 |
8 | 0.828 | 0.231 | 0.497 | 20 | 0.596 |
9 | 0.778 | 0.217 | 0.467 | 20 | 0.560 |
10 | 0.728 | 0.203 | 0.437 | 20 | 0.524 |
表4 电价假设条件
Table 4 Calculation of electricity price assumptions
序号 | 峰电单价 | 谷电单价 | 平电单价 | 每月容量电价 | 峰谷价差/ (CNY/(kW·h)) |
---|---|---|---|---|---|
1 | 1.177 | 0.329 | 0.707 | 20 | 0.848 |
2 | 1.127 | 0.315 | 0.677 | 20 | 0.812 |
3 | 1.077 | 0.301 | 0.647 | 20 | 0.776 |
4 | 1.027 | 0.287 | 0.617 | 20 | 0.740 |
5 | 0.977 | 0.273 | 0.587 | 20 | 0.704 |
6 | 0.928 | 0.259 | 0.557 | 20 | 0.668 |
7 | 0.878 | 0.245 | 0.527 | 20 | 0.632 |
8 | 0.828 | 0.231 | 0.497 | 20 | 0.596 |
9 | 0.778 | 0.217 | 0.467 | 20 | 0.560 |
10 | 0.728 | 0.203 | 0.437 | 20 | 0.524 |
设备 | 能量平衡方程 | 㶲平衡方程 |
---|---|---|
CAC | ||
PAC | ||
BET | ||
CACC | ||
PACC | ||
BETC | ||
MHX | ||
CON | ||
SC | ||
TV | ||
SEP | ||
LAT | ||
DC | ||
LAP | ||
AT |
表A1 ASU-ESG系统设备的能量平衡方程和㶲平衡方程
Table A1 Energy balance equations and exergy balance equations for ASU-ESG system
设备 | 能量平衡方程 | 㶲平衡方程 |
---|---|---|
CAC | ||
PAC | ||
BET | ||
CACC | ||
PACC | ||
BETC | ||
MHX | ||
CON | ||
SC | ||
TV | ||
SEP | ||
LAT | ||
DC | ||
LAP | ||
AT |
项目 | 设备 | 成本估算模型 |
---|---|---|
预处理和纯化单元 | PPU | |
涡轮机械 | CAC | |
PAC | KCEPCI=CEPCI2023/CEPCI2001=708/397 [ KBM=2.75,K1=2.2897,K2=1.3604,K3=-0.1027 | |
BET | ||
换热设备 | CACC/PACC/BETC | |
精馏单元 | SC | |
MHX | ||
TV1/TV2 | ||
SEP1 | ||
HPC/LPC | ||
LAES单元 | CON | |
LAT | ||
LAP | ||
AT | ||
TV3 | ||
SEP2 |
表A2 ASU-ESG系统设备的成本估算模型
Table A2 Equipment investment cost calculation formulas for the ASU-ESG system
项目 | 设备 | 成本估算模型 |
---|---|---|
预处理和纯化单元 | PPU | |
涡轮机械 | CAC | |
PAC | KCEPCI=CEPCI2023/CEPCI2001=708/397 [ KBM=2.75,K1=2.2897,K2=1.3604,K3=-0.1027 | |
BET | ||
换热设备 | CACC/PACC/BETC | |
精馏单元 | SC | |
MHX | ||
TV1/TV2 | ||
SEP1 | ||
HPC/LPC | ||
LAES单元 | CON | |
LAT | ||
LAP | ||
AT | ||
TV3 | ||
SEP2 |
项目 | 计算模型 |
---|---|
系统设备( | 见表A2 |
安装工程( | |
仪控电控系统( | |
管道( | |
其他( | |
直接支出( | |
采购( | |
施工( | |
间接支出( | |
资本支出总额( | |
运营人工( | |
维修维护( | |
保险( | |
年度固定运营支出( | |
电力( | 见正文 |
冷却用水( | |
耗材( | |
年度可变运营支出( | |
年度运营支出总额( |
表A3 资本支出和年度运营支出的计算模型
Table A3 Capital investment and operating cost models
项目 | 计算模型 |
---|---|
系统设备( | 见表A2 |
安装工程( | |
仪控电控系统( | |
管道( | |
其他( | |
直接支出( | |
采购( | |
施工( | |
间接支出( | |
资本支出总额( | |
运营人工( | |
维修维护( | |
保险( | |
年度固定运营支出( | |
电力( | 见正文 |
冷却用水( | |
耗材( | |
年度可变运营支出( | |
年度运营支出总额( |
1 | 才正彬. 空分装置高效节能优化与应用[D]. 杭州: 浙江大学, 2019. |
Cai Z B. High efficiency and energy saving optimization and application of air separation unit[D]. Hangzhou: Zhejiang University, 2019. | |
2 | 张培昆, 王立. 空分短期停车时间阈值对氧气生产调度的影响[J]. 化工学报, 2017, 68(6): 2423-2433. |
Zhang P K, Wang L. Effects of temporary shutdown time-threshold on oxygen production schedule in air separation unit[J]. CIESC Journal, 2017, 68(6): 2423-2433. | |
3 | Liu Y N, Wang L, He X F. An external-compression air separation unit with energy storage and its thermodynamic and economic analysis[J]. Journal of Energy Storage, 2023, 59: 106513. |
4 | 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30. |
Wang C, She X H, Zhang X S. Thermodynamic study of liquid air energy storage with air purification unit[J]. CIESC Journal, 2020, 71(S1): 23-30. | |
5 | Wang K W, Tong L G, Yin S W, et al. Novel ASU-LAES system with flexible energy release: analysis of cycle performance, economics, and peak shaving advantages[J]. Energy, 2024, 288: 129720. |
6 | Liu Y X, Kong F L, Tong L G, et al. A novel cryogenic air separation unit with energy storage: recovering waste heat and reusing storage media[J]. Journal of Energy Storage, 2024, 80: 110359. |
7 | He X F, Liu Y N, Rehman A, et al. A novel air separation unit with energy storage and generation and its energy efficiency and economy analysis[J]. Applied Energy, 2021, 281: 115976. |
8 | He X F, Liu Y N, Rehman A, et al. Feasibility and performance analysis of a novel air separation unit with energy storage and air recovery[J]. Renewable Energy, 2022, 195: 598-619. |
9 | Kong F L, Liu Y X, Shen M H, et al. A novel economic scheduling of multi-product deterministic demand for co-production air separation system with liquid air energy storage[J]. Renewable Energy, 2023, 209: 533-545. |
10 | 黄欢. 耦合空分装置生产的液化空气储能系统研究[J]. 当代化工研究, 2022(16): 101-103. |
Huang H. Research on the liquefied air energy storage system coupled with air separation unit production[J]. Modern Chemical Research, 2022(16): 101-103. | |
11 | 刘波. 基于HYSYS的空分精馏过程仿真分析[D]. 西安: 西安电子科技大学, 2013. |
Liu B. Distillation process simulation analysis based on HYSYS[D]. Xi’an: Xidian University, 2013. | |
12 | Li D, Duan L Q. Techno-economic analysis of a new thermal storage operation strategy for a solar aided liquid air energy storage system[J]. Journal of Energy Storage, 2024, 78: 110029. |
13 | Adedeji M, Abid M, Dagbasi M, et al. Improvement of a liquid air energy storage system: investigation of performance analysis for novel ambient air conditioning[J]. Journal of Energy Storage, 2022, 50: 104294. |
14 | 初日召, 李勇, 王庄. KDON-5600/14000空分装置运行总结[J]. 中国氯碱, 2017(8): 28-30, 47. |
Chu R Z, Li Y, Wang Z. Introduction and operation summary of KDON-5600/14000 air separation unit[J]. China Chlor-Alkali, 2017(8): 28-30, 47. | |
15 | Huo C J, Sun J J, Song P. Energy, exergy and economic analyses of an optimal use of cryogenic liquid turbine expander in air separation units[J]. Chemical Engineering Research and Design, 2023, 189: 194-209. |
16 | Li Y H, Fan X Y, Li J X, et al. Novel liquid air energy storage coupled with liquefied ethylene cold energy: thermodynamic, exergy and economic analysis[J]. Applied Thermal Engineering, 2024, 245: 122909. |
17 | 荣杨一鸣, 吴巧仙, 周霞, 等. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
Rong Y Y M, Wu Q X, Zhou X, et al. Research on optimization of self-utilization performance of air compression waste heat in air separation system[J]. CIESC Journal, 2021, 72(3): 1654-1666. | |
18 | Yang Y, Tong L G, Liu Y X, et al. A novel integrated system of hydrogen liquefaction process and liquid air energy storage (LAES): energy, exergy, and economic analysis[J]. Energy Conversion and Management, 2023, 280: 116799. |
19 | Tesch S, Morosuk T, Tsatsaronis G. Comparative evaluation of cryogenic air separation units from the exergetic and economic points of view[M]//Tatiana M, Muhammad S. Low-temperature Technologies. Rijeka: IntechOpen, 2019. |
20 | Fan X Y, Ji W, Guo L N, et al. Thermo-economic analysis of the integrated system of thermal power plant and liquid air energy storage[J]. Journal of Energy Storage, 2023, 57: 106233. |
21 | 李燕鹏. 低温空气分离装置的流程选型方法研究[D]. 杭州: 浙江大学, 2019. |
Li Y P. Research on process selection method of cryogenic air separation unit[D]. Hangzhou: Zhejiang University, 2019. | |
22 | 盛新江. 空分设备项目投资经济性分析[J]. 深冷技术, 2005(4): 5-7. |
Sheng X J. Economic analysis of investing an ASU project[J]. Cryogenic Technology, 2005(4): 5-7. | |
23 | 中华人民共和国个人所得税法实施条例[J]. 中华人民共和国国务院公报, 2019(1): 25-30. |
Regulations for the implementation of the individual income tax law of the People’s Republic of China[J]. Gazette of the State Council of the People’s Republic of China, 2019(1): 25-30. | |
24 | 田英男. 先进绝热压缩空气储能系统的高等㶲分析及经济性评价[D]. 济南:山东大学, 2023. |
Tian Y N. Advanced exergy analysis and economic evaluation of advanced adiabatic compressed air energy storage system[D]. Jinan: Shandong University, 2023. | |
25 | 周程, 苏礼勇. 40000 m3/h空分装置设备选型及优化的可行性分析[J]. 中氮肥, 2020(3): 1-6. |
Zhou C, Su L Y. Feasibility analysis of equipment selection and optimization of 40000 m3/h air separation unit[J]. Nitrogenous Fertilizer Progress, 2020(3): 1-6. | |
26 | 李政辰. 整装冷箱形式特大型空分设备成本管理研究[D]. 杭州: 浙江大学, 2023. |
Li Z C. Study of cost control of large size ASU with modular coldbox[D]. Hangzhou: Zhejiang University, 2023. | |
27 | Li J X, Fan X Y, Li Y H, et al. A novel system of liquid air energy storage with LNG cold energy and industrial waste heat: thermodynamic and economic analysis[J]. Journal of Energy Storage, 2024, 86: 111359. |
28 | Gao Z Z, Ji W, Guo L N, et al. Thermo-economic analysis of the integrated bidirectional peak shaving system consisted by liquid air energy storage and combined cycle power plant[J]. Energy Conversion and Management, 2021, 234: 113945. |
29 | Liu Y X, Tong L G, Kong F L, et al. An improved ASU distillation process and DIM-LPB method for variable product ratio demand[J]. Separation and Purification Technology, 2021, 277: 119499. |
30 | 陈仕卿. LNG冷能在空气分离系统中的集成与优化研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2019. |
Chen S Q. Research on the integration of LNG regasification and air separation units[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2019. | |
31 | 马国光, 李雅娴, 张晨. 基于改良㶲分析方法的LNG冷能空分工艺优化[J]. 天然气工业, 2018, 38(9): 121-128. |
Ma G G, Li Y X, Zhang C. Optimization of the LNG cold energy air separation process based on the advanced exergy analysis method[J]. Natural Gas Industry, 2018, 38(9): 121-128. | |
32 | 李佳佳, 李兴朔, 魏凡超, 等. 耦合火电机组的新型压缩空气储能系统技术经济性评估研究[J]. 中国电机工程学报, 2023, 43(23): 9171-9183. |
Li J J, Li X S, Wei F C, et al. Research on techno-economic evaluation of new type compressed air energy storage coupled with thermal power unit[J]. Proceedings of the CSEE, 2023, 43(23): 9171-9183. | |
33 | Bashiri Mousavi S, Ahmadi P, Hanafizadeh P, et al. Dynamic simulation and techno-economic analysis of liquid air energy storage with cascade phase change materials as a cold storage system[J]. Journal of Energy Storage, 2022, 50: 104179. |
34 | Saleh Kandezi M, Mousavi Naeenian S M. Investigation of an efficient and green system based on liquid air energy storage (LAES) for district cooling and peak shaving: energy and exergy analyses[J]. Sustainable Energy Technologies and Assessments, 2021, 47:101396. |
35 | Singla R, Chowdhury K. Comparisons of thermodynamic and economic performances of cryogenic air separation plants designed for external and internal compression of oxygen[J]. Applied Thermal Engineering, 2019, 160: 114025. |
36 | Hamdy S, Morosuk T, Tsatsaronis G. Exergetic and economic assessment of integrated cryogenic energy storage systems[J]. Cryogenics, 2019, 99: 39-50. |
37 | Ebrahimi A, Ziabasharhagh M. Optimal design and integration of a cryogenic air separation unit (ASU) with liquefied natural gas (LNG) as heat sink, thermodynamic and economic analyses[J]. Energy, 2017, 126: 868-885. |
38 | Mehrpooya M, Zonouz M J. Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method[J]. Energy Conversion and Management, 2017, 139: 245-259. |
39 | 王之宇. 热耦合空分塔的节能优化与最优结构设计研究[D]. 杭州: 浙江大学, 2021. |
Wang Z Y. Research on energy saving optimization and optimal structure design of heat-intrgrated air separation columns[D]. Hangzhou: Zhejiang University, 2021. | |
40 | Park J H, Heo J Y, Lee J I. Techno-economic study of nuclear integrated liquid air energy storage system[J]. Energy Conversion and Management, 2022, 251: 114937. |
[1] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[2] | 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30. |
[3] | 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978. |
[4] | 汪亚燕, 田彩霞, 丁兆阳, 唐忠利, 张东辉. 基于双回流变压吸附工艺的空气分离模拟及分析[J]. 化工学报, 2019, 70(10): 4002-4011. |
[5] | 王浩宇1,2,刘应书1,杨雄1. 空气预纯化的技术研究进展[J]. 化工进展, 2014, 33(03): 542-549. |
[6] | 常亮, 刘兴高. 内部热耦合空分塔的节能优化分析[J]. 化工学报, 2012, 63(9): 2936-2940. |
[7] | 李 军1,2,王汝军1,张月明1,马占华1,孙兰义1. 隔壁精馏塔应用于空气分离的研究[J]. CIESC Journal, 2011, 30(11): 2393-. |
[8] | 张培昆, 王立, 李正强. 基于改进型吸附等温线模型的空气预纯化TSA双层床模拟 [J]. 化工学报, 2010, 61(10): 2604-2614. |
[9] | 脱瀚斐, 厉彦忠, 谭宏博. 空气分离与天然气液化组合循环 [J]. 化工学报, 2008, 59(10): 2498-2504. |
[10] | 卢洪,李成岳. 变压吸附空分制氮过程的研究 [J]. CIESC Journal, 2000, 51(5): 586-591. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||