化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2422-2432.DOI: 10.11949/0438-1157.20231229
李沛奇1(), 陈雪娇2, 武博翔1, 蒋榕培2, 杨超3, 刘朝晖1()
收稿日期:
2023-11-27
修回日期:
2024-03-06
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
刘朝晖
作者简介:
李沛奇(1999—),男,硕士研究生,peiqi_li@stu.xjtu.edu.cn
基金资助:
Peiqi LI1(), Xuejiao CHEN2, Boxiang WU1, Rongpei JIANG2, Chao YANG3, Zhaohui LIU1()
Received:
2023-11-27
Revised:
2024-03-06
Online:
2024-07-25
Published:
2024-08-09
Contact:
Zhaohui LIU
摘要:
基于Beer-Lambert定律,采用γ射线吸收法,研制了高参数火箭煤油密度测量装置,对液态及超临界压力下火箭煤油的密度进行测量方法研究。测量温度范围293~673 K,压力范围0.3~30 MPa,密度测量结果的扩展相对不确定度为2.2%~3.2%(置信因子k=2)。选取常压、温度293 K和压力5 MPa、温度673 K的环己烷分别作为高密度和低密度标准流体,抵消了温度变化对测量装置射线吸收率的影响。通过对环己烷和甲苯密度测量的校验,验证了测量方法的可靠性和准确性。在此基础上,完成了石油基和煤基火箭煤油的密度测量,并计算了石油基和煤基火箭煤油等压热膨胀系数。利用实验数据,拟合了宽广温度压力范围内两种火箭煤油密度的Tait函数关系式,密度实验数据与方程的平均绝对偏差为0.21%,最大绝对偏差为1.32%。测量结果表明:在所测量的温度和压力范围内,煤基煤油与石油基煤油的密度值基本一致。所得密度实验测量数据为高参数火箭煤油物性及传热等研究提供了基础数据。
中图分类号:
李沛奇, 陈雪娇, 武博翔, 蒋榕培, 杨超, 刘朝晖. 高参数石油基和煤基火箭煤油射线法密度测量实验研究[J]. 化工学报, 2024, 75(7): 2422-2432.
Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters[J]. CIESC Journal, 2024, 75(7): 2422-2432.
样品 | CAS号 | 来源 | 纯度 |
---|---|---|---|
环己烷 | 110-82-7 | 天津大茂化学试剂厂 | 99.7%①,分析纯 |
甲苯 | 108-88-3 | 天津大茂化学试剂厂 | 99.7%①,分析纯 |
煤基煤油 | 无 | 西安航天动力试验技术研究所 | ≥99.9%②,未进一步提纯 |
石油基煤油 | 无 | 北京航天试验技术研究所 | ≥99.9%②,未进一步提纯 |
表1 化学样品来源及纯度
Table 1 The chemical samples source and purity
样品 | CAS号 | 来源 | 纯度 |
---|---|---|---|
环己烷 | 110-82-7 | 天津大茂化学试剂厂 | 99.7%①,分析纯 |
甲苯 | 108-88-3 | 天津大茂化学试剂厂 | 99.7%①,分析纯 |
煤基煤油 | 无 | 西安航天动力试验技术研究所 | ≥99.9%②,未进一步提纯 |
石油基煤油 | 无 | 北京航天试验技术研究所 | ≥99.9%②,未进一步提纯 |
馏分烃类组成① | 成分质量分数/% | |
---|---|---|
煤基煤油 | 石油基煤油 | |
链烷烃 | 19.6 | 19.4 |
环烷烃 | 78.4 | 77.1 |
芳烃 | 2.0 | 3.5 |
表2 煤基煤油和石油基煤油的成分
Table 2 Parameters of coal-based kerosene and petroleum-based kerosene
馏分烃类组成① | 成分质量分数/% | |
---|---|---|
煤基煤油 | 石油基煤油 | |
链烷烃 | 19.6 | 19.4 |
环烷烃 | 78.4 | 77.1 |
芳烃 | 2.0 | 3.5 |
T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) |
---|---|---|---|---|---|---|---|
p=0.3 MPa | 595.6 | 573.9 | 413.5 | 762.2 | 574.2 | 653.4 | |
296.8 | 838.1 | p=5 MPa | 433.7 | 738.2 | 593.6 | 632.2 | |
314.3 | 820.1 | 291.0 | 837.7 | 454.2 | 728.9 | 613.5 | 622.3 |
333.4 | 798.3 | 313.8 | 822.6 | 474.7 | 711.5 | 632.6 | 611.8 |
352.3 | 790.2 | 332.8 | 809.8 | 493.9 | 693.4 | 653.6 | 591.3 |
371.2 | 780.4 | 352.5 | 791.1 | 513.6 | 672.1 | 672.3 | 573.4 |
392.2 | 756.6 | 372.6 | 775.7 | 536.4 | 662.4 | p=30 MPa | |
413.5 | 743.8 | 393.6 | 760.5 | 555.3 | 650.2 | 303.4 | 840.1 |
434.4 | 726.0 | 413.4 | 749.1 | 573.6 | 630.9 | 313.2 | 830.1 |
453.1 | 713.6 | 433.1 | 735.9 | 595.0 | 612.7 | 332.5 | 819.9 |
473.4 | 701.6 | 454.1 | 720.1 | 613.6 | 601.5 | 351.9 | 809.8 |
494.5 | 670.3 | 473.5 | 706.4 | 634.4 | 564.3 | 372.3 | 795.6 |
513.8 | 646.3 | 493.2 | 683.8 | 652.0 | 558.8 | 392.5 | 786.0 |
p=1 MPa | 513.3 | 661.0 | 673.3 | 536.5 | 411.7 | 766.4 | |
292.4 | 836.7 | 533.5 | 657.4 | p=20 MPa | 432.5 | 755.7 | |
313.3 | 834.7 | 553.3 | 634.5 | 302.4 | 833.4 | 451.4 | 741.5 |
332.2 | 795.6 | 572.7 | 609.4 | 309.0 | 828.0 | 472.4 | 732.4 |
352.2 | 785.2 | 592.7 | 596.8 | 332.5 | 809.6 | 493.0 | 718.0 |
371.4 | 774.2 | 613.0 | 569.5 | 352.9 | 801.5 | 512.5 | 702.6 |
392.6 | 763.5 | 632.5 | 547.7 | 372.3 | 780.9 | 531.7 | 686.9 |
413.3 | 750.8 | 653.4 | 523.4 | 391.8 | 769.5 | 551.9 | 671.0 |
434.1 | 737.5 | 673.9 | 494.6 | 414.0 | 747.3 | 571.7 | 663.9 |
453.9 | 712.5 | p=10 MPa | 432.5 | 739.7 | 591.3 | 649.7 | |
473.6 | 697.4 | 293.8 | 846.3 | 451.3 | 724.4 | 614.4 | 631.4 |
493.4 | 681.1 | 313.8 | 821.2 | 472.5 | 715.2 | 631.0 | 626.8 |
513.3 | 658.7 | 333.0 | 813.4 | 494.5 | 696.4 | 652.1 | 617.1 |
534.1 | 642.0 | 352.4 | 798.1 | 513.6 | 681.6 | 671.8 | 601.1 |
554.9 | 620.1 | 373.8 | 783.3 | 536.1 | 668.5 | ||
573.3 | 597.5 | 392.3 | 774.6 | 552.5 | 662.6 |
表3 火箭煤油(煤基)的密度测量结果
Table 3 Density measurement results of the rocket kerosene (coal-based)
T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) |
---|---|---|---|---|---|---|---|
p=0.3 MPa | 595.6 | 573.9 | 413.5 | 762.2 | 574.2 | 653.4 | |
296.8 | 838.1 | p=5 MPa | 433.7 | 738.2 | 593.6 | 632.2 | |
314.3 | 820.1 | 291.0 | 837.7 | 454.2 | 728.9 | 613.5 | 622.3 |
333.4 | 798.3 | 313.8 | 822.6 | 474.7 | 711.5 | 632.6 | 611.8 |
352.3 | 790.2 | 332.8 | 809.8 | 493.9 | 693.4 | 653.6 | 591.3 |
371.2 | 780.4 | 352.5 | 791.1 | 513.6 | 672.1 | 672.3 | 573.4 |
392.2 | 756.6 | 372.6 | 775.7 | 536.4 | 662.4 | p=30 MPa | |
413.5 | 743.8 | 393.6 | 760.5 | 555.3 | 650.2 | 303.4 | 840.1 |
434.4 | 726.0 | 413.4 | 749.1 | 573.6 | 630.9 | 313.2 | 830.1 |
453.1 | 713.6 | 433.1 | 735.9 | 595.0 | 612.7 | 332.5 | 819.9 |
473.4 | 701.6 | 454.1 | 720.1 | 613.6 | 601.5 | 351.9 | 809.8 |
494.5 | 670.3 | 473.5 | 706.4 | 634.4 | 564.3 | 372.3 | 795.6 |
513.8 | 646.3 | 493.2 | 683.8 | 652.0 | 558.8 | 392.5 | 786.0 |
p=1 MPa | 513.3 | 661.0 | 673.3 | 536.5 | 411.7 | 766.4 | |
292.4 | 836.7 | 533.5 | 657.4 | p=20 MPa | 432.5 | 755.7 | |
313.3 | 834.7 | 553.3 | 634.5 | 302.4 | 833.4 | 451.4 | 741.5 |
332.2 | 795.6 | 572.7 | 609.4 | 309.0 | 828.0 | 472.4 | 732.4 |
352.2 | 785.2 | 592.7 | 596.8 | 332.5 | 809.6 | 493.0 | 718.0 |
371.4 | 774.2 | 613.0 | 569.5 | 352.9 | 801.5 | 512.5 | 702.6 |
392.6 | 763.5 | 632.5 | 547.7 | 372.3 | 780.9 | 531.7 | 686.9 |
413.3 | 750.8 | 653.4 | 523.4 | 391.8 | 769.5 | 551.9 | 671.0 |
434.1 | 737.5 | 673.9 | 494.6 | 414.0 | 747.3 | 571.7 | 663.9 |
453.9 | 712.5 | p=10 MPa | 432.5 | 739.7 | 591.3 | 649.7 | |
473.6 | 697.4 | 293.8 | 846.3 | 451.3 | 724.4 | 614.4 | 631.4 |
493.4 | 681.1 | 313.8 | 821.2 | 472.5 | 715.2 | 631.0 | 626.8 |
513.3 | 658.7 | 333.0 | 813.4 | 494.5 | 696.4 | 652.1 | 617.1 |
534.1 | 642.0 | 352.4 | 798.1 | 513.6 | 681.6 | 671.8 | 601.1 |
554.9 | 620.1 | 373.8 | 783.3 | 536.1 | 668.5 | ||
573.3 | 597.5 | 392.3 | 774.6 | 552.5 | 662.6 |
T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) |
---|---|---|---|---|---|---|---|
p=0.3 MPa | 594.3 | 562.0 | 392.5 | 771.1 | 553.0 | 655.0 | |
294.4 | 832.6 | 614.0 | 540.7 | 412.7 | 741.2 | 573.0 | 642.2 |
313.2 | 815.8 | p=5 MPa | 434.2 | 734.9 | 592.6 | 635.2 | |
332.9 | 805.8 | 294.2 | 833.5 | 453.8 | 720.3 | 613.0 | 616.8 |
353.1 | 791.2 | 314.0 | 817.8 | 473.8 | 711.1 | 633.4 | 611.7 |
372.1 | 772.1 | 332.8 | 802.2 | 493.0 | 691.4 | 653.7 | 588.3 |
393.3 | 760.5 | 352.4 | 783.4 | 513.3 | 674.2 | 673.4 | 563.9 |
413.1 | 737.8 | 371.8 | 770.8 | 533.6 | 665.8 | p=30 MPa | |
433.4 | 725.1 | 392.6 | 759.1 | 553.6 | 640.1 | 302.0 | 845.6 |
453.4 | 709.3 | 411.0 | 738.6 | 573.8 | 631.6 | 312.2 | 835.1 |
472.6 | 693.0 | 433.4 | 732.0 | 593.0 | 615.1 | 333.8 | 815.7 |
494.2 | 679.7 | 452.9 | 723.4 | 613.9 | 591.3 | 353.1 | 812.5 |
512.8 | 649.8 | 473.4 | 699.3 | 633.0 | 574.3 | 373.5 | 795.2 |
p=1 MPa | 493.2 | 684.6 | 653.0 | 556.7 | 393.5 | 776.2 | |
294.8 | 829.4 | 513.3 | 665.4 | 673.2 | 530.7 | 413.0 | 764.1 |
314.1 | 817.8 | 534.2 | 642.7 | p=20 MPa | 433.5 | 750.7 | |
332.5 | 801.4 | 553.9 | 628.2 | 303.1 | 830.9 | 453.3 | 744.3 |
352.4 | 791.9 | 574.1 | 603.2 | 312.6 | 827.6 | 473.8 | 723.7 |
372.6 | 781.6 | 594.0 | 591.4 | 333.2 | 812.3 | 492.9 | 717.3 |
393.0 | 759.4 | 612.3 | 576.7 | 352.9 | 794.1 | 513.9 | 709.5 |
412.6 | 744.1 | 632.2 | 553.6 | 373.0 | 789.3 | 532.0 | 691.4 |
433.0 | 725.7 | 652.0 | 528.3 | 393.1 | 770.1 | 554.1 | 673.6 |
453.7 | 709.6 | 673.5 | 499.1 | 413.0 | 762.8 | 572.9 | 657.6 |
473.2 | 689.8 | p=10 MPa | 433.2 | 740.4 | 594.2 | 653.8 | |
493.2 | 671.0 | 295.1 | 834.2 | 453.4 | 730.3 | 612.9 | 639.2 |
511.9 | 659.8 | 312.9 | 815.4 | 473.3 | 712.8 | 632.5 | 622.2 |
533.7 | 641.1 | 332.7 | 809.6 | 492.8 | 701.4 | 654.5 | 618.7 |
552.9 | 614.6 | 352.1 | 801.6 | 512.9 | 690.5 | 672.8 | 601.0 |
575.0 | 602.4 | 372.5 | 780.5 | 533.0 | 674.2 |
表4 火箭煤油(石油基)的密度测量结果
Table 4 Density measurement results of the rocket kerosene (petroleum-based)
T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) | T/K | ρexp/(kg/m3) |
---|---|---|---|---|---|---|---|
p=0.3 MPa | 594.3 | 562.0 | 392.5 | 771.1 | 553.0 | 655.0 | |
294.4 | 832.6 | 614.0 | 540.7 | 412.7 | 741.2 | 573.0 | 642.2 |
313.2 | 815.8 | p=5 MPa | 434.2 | 734.9 | 592.6 | 635.2 | |
332.9 | 805.8 | 294.2 | 833.5 | 453.8 | 720.3 | 613.0 | 616.8 |
353.1 | 791.2 | 314.0 | 817.8 | 473.8 | 711.1 | 633.4 | 611.7 |
372.1 | 772.1 | 332.8 | 802.2 | 493.0 | 691.4 | 653.7 | 588.3 |
393.3 | 760.5 | 352.4 | 783.4 | 513.3 | 674.2 | 673.4 | 563.9 |
413.1 | 737.8 | 371.8 | 770.8 | 533.6 | 665.8 | p=30 MPa | |
433.4 | 725.1 | 392.6 | 759.1 | 553.6 | 640.1 | 302.0 | 845.6 |
453.4 | 709.3 | 411.0 | 738.6 | 573.8 | 631.6 | 312.2 | 835.1 |
472.6 | 693.0 | 433.4 | 732.0 | 593.0 | 615.1 | 333.8 | 815.7 |
494.2 | 679.7 | 452.9 | 723.4 | 613.9 | 591.3 | 353.1 | 812.5 |
512.8 | 649.8 | 473.4 | 699.3 | 633.0 | 574.3 | 373.5 | 795.2 |
p=1 MPa | 493.2 | 684.6 | 653.0 | 556.7 | 393.5 | 776.2 | |
294.8 | 829.4 | 513.3 | 665.4 | 673.2 | 530.7 | 413.0 | 764.1 |
314.1 | 817.8 | 534.2 | 642.7 | p=20 MPa | 433.5 | 750.7 | |
332.5 | 801.4 | 553.9 | 628.2 | 303.1 | 830.9 | 453.3 | 744.3 |
352.4 | 791.9 | 574.1 | 603.2 | 312.6 | 827.6 | 473.8 | 723.7 |
372.6 | 781.6 | 594.0 | 591.4 | 333.2 | 812.3 | 492.9 | 717.3 |
393.0 | 759.4 | 612.3 | 576.7 | 352.9 | 794.1 | 513.9 | 709.5 |
412.6 | 744.1 | 632.2 | 553.6 | 373.0 | 789.3 | 532.0 | 691.4 |
433.0 | 725.7 | 652.0 | 528.3 | 393.1 | 770.1 | 554.1 | 673.6 |
453.7 | 709.6 | 673.5 | 499.1 | 413.0 | 762.8 | 572.9 | 657.6 |
473.2 | 689.8 | p=10 MPa | 433.2 | 740.4 | 594.2 | 653.8 | |
493.2 | 671.0 | 295.1 | 834.2 | 453.4 | 730.3 | 612.9 | 639.2 |
511.9 | 659.8 | 312.9 | 815.4 | 473.3 | 712.8 | 632.5 | 622.2 |
533.7 | 641.1 | 332.7 | 809.6 | 492.8 | 701.4 | 654.5 | 618.7 |
552.9 | 614.6 | 352.1 | 801.6 | 512.9 | 690.5 | 672.8 | 601.0 |
575.0 | 602.4 | 372.5 | 780.5 | 533.0 | 674.2 |
煤油 | A0 | A1 | A2 | A3 | B0 | B1 | B2 | C | AAD/% | MAD/% |
---|---|---|---|---|---|---|---|---|---|---|
煤基 | 1076.5 | -1.078 | 0.00130 | -1.52×10-6 | 1104.9 | -3.19 | 0.00233 | 0.179 | 0.67 | 0.51 |
石油基 | 1075.0 | -1.084 | 0.00131 | -1.52×10-6 | 851.0 | -2.47 | 0.00181 | 0.160 | 2.18 | 2.42 |
表5 两种火箭煤油密度测量结果的Tait方程拟合参数
Table 5 Empirical equation fitting parameters for the density results of the rocket kerosene
煤油 | A0 | A1 | A2 | A3 | B0 | B1 | B2 | C | AAD/% | MAD/% |
---|---|---|---|---|---|---|---|---|---|---|
煤基 | 1076.5 | -1.078 | 0.00130 | -1.52×10-6 | 1104.9 | -3.19 | 0.00233 | 0.179 | 0.67 | 0.51 |
石油基 | 1075.0 | -1.084 | 0.00131 | -1.52×10-6 | 851.0 | -2.47 | 0.00181 | 0.160 | 2.18 | 2.42 |
图7 煤基和石油基煤油密度随温度和压力变化的Tait方程拟合
Fig.7 Fitting the Tait equation for density variation with temperature and pressure for coal-based and petroleum-based kerosene
参数 | 标准不确定度 |
---|---|
质量流量 | 0.5 g/s |
压力 | 0.01 MPa |
射线强度 | 0.05 μSv/h |
温度 | 0.50 K |
计数率 | 1.0%~1.5% |
p0压力下环己烷密度 | 0.5 kg/m3 |
表6 主要实验参数的不确定度
Table 6 Uncertainties of the main experimental parameters
参数 | 标准不确定度 |
---|---|
质量流量 | 0.5 g/s |
压力 | 0.01 MPa |
射线强度 | 0.05 μSv/h |
温度 | 0.50 K |
计数率 | 1.0%~1.5% |
p0压力下环己烷密度 | 0.5 kg/m3 |
1 | Sutton G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power, 2003, 19(6): 978-1007. |
2 | Zhang S L, Li X, Zuo J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. |
3 | Edwards T. Liquid fuels and propellants for aerospace propulsion: 1903—2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107. |
4 | 金烜, 沈赤兵, 吴先宇, 等. 超燃冲压发动机再生冷却技术研究进展[J]. 火箭推进, 2016, 42(5): 66-73. |
Jin X, Shen C B, Wu X Y, et al. Progress of regenerative cooling technology for scramjet[J]. Journal of Rocket Propulsion, 2016, 42(5): 66-73. | |
5 | 章思龙, 秦江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190. |
Zhang S L, Qin J, Zhou W X, et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology, 2018, 39(10): 2177-2190. | |
6 | Salakhutdinov G. Development of Methods of Cooling Liquid Propellant Rocket Engines(ZhRDs), 1903—1970[M]. USA:American Astronautical Society, 1990. |
7 | 胡志宏, 陈听宽, 罗毓珊, 等. 高热流条件下超临界压力煤油流过小直径管的传热特性[J]. 化工学报, 2002, 53(2): 134-138. |
Hu Z H, Chen T K, Luo Y S, et al. Heat transfer to kerosene at supercritical pressure in small-diameter tube with large heat flux[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(2): 134-138. | |
8 | 罗毓珊, 陈听宽, 胡志宏, 等. 高参数小管径内煤油的传热特性研究[J]. 工程热物理学报, 2005, 26(4): 609-612. |
Luo Y S, Chen T K, Hu Z H, et al. Investigation on heat transfer characteristics for kerosene under high parameter and in small diameter tube[J]. Journal of Engineering Thermophysics, 2005, 26(4): 609-612. | |
9 | 张家庆, 刘朝晖, 李宇, 等. 碳氢燃料JP-10高温液态黏度测量和推算模型构建方法研究[J]. 化工学报, 2022, 73(1): 153-161. |
Zhang J Q, Liu Z H, Li Y, et al. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions[J]. CIESC Journal, 2022, 73(1): 153-161. | |
10 | Zhang J Q, Yang C, Liu Z H, et al. Measurements and predictive models for the viscosity of coal-based kerosene at temperatures up to 673 K and pressures up to 40 MPa[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2242-2256. |
11 | Zhong F Q, Fan X J, Yu G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550. |
12 | 吕辉, 梁秀丽, 王爱萍, 等. 液体密度测定方法及标准应用[J]. 山东化工, 2016, 45(6): 49-51. |
Lv H, Liang X L, Wang A P, et al. Liquid density measurement methods and standard applications[J]. Shandong Chemical Industry, 2016, 45(6): 49-51. | |
13 | Baird Z S, Oja V. Predicting fuel properties using chemometrics: a review and an extension to temperature dependent physical properties by using infrared spectroscopy to predict density[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 158: 41-47. |
14 | Sagdeev D I, Fomina M G, Mukhamedzyanov G K, et al. Measurements of the density and viscosity of 1-hexene+1-octene mixtures at high temperatures and high pressures[J]. Thermochimica Acta, 2014, 592: 73-85. |
15 | Kozdon A. New example of the self-improving measuring system in pycnometric density measurements on liquids[J]. Metrologia, 2001, 38: 135-146. |
16 | Eckmann P, von Preetzmann N, Cavuoto G, et al. Density measurements of (0.99 methane + 0.01 butane) and (0.98 methane + 0.02 isopentane) over the temperature range from (100 to 160) K at pressures up to 10.8 MPa[J]. International Journal of Thermophysics, 2020, 41: 156. |
17 | Hale J M. Ultrasonic density measurement for process control[J]. Ultrasonics, 1988, 26(6): 356-357. |
18 | Li N, Lv J F. Aircraft fuel density measurement based on radioactive ray attenuation principle[C]//Fifth International Symposium on Instrumentation and Control Technology. Beijing: SPIE, 2003. |
19 | Audonnet F, Pádua A A H. Density and viscosity of mixtures of n-hexane and 1-hexanol from 303 to 423 K up to 50 MPa[J]. International Journal of Thermophysics, 2002, 23(6): 1537-1550. |
20 | 文旭, 周灏, 高新科, 等. 苯高温高压下流体密度的在线测量[J]. 推进技术, 2015, 36(9): 1403-1409. |
Wen X, Zhou H, Gao X K, et al. Online density measurements of benzene under high temperature and pressure[J]. Journal of Propulsion Technology, 2015, 36(9): 1403-1409. | |
21 | Abdulagatov I M, Azizov N D. Density of rocket propellant (RP-1 fuel) at high temperatures and high pressures[J]. Fuel, 2010, 89(7): 1731-1735. |
26 | Zhang J Q, Jiang R P, Shi W K, et al. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene[J]. CIESC Journal, 2023, 74(2): 653-665. |
27 | 吴治华. 原子核物理实验方法[M]. 3版. 北京: 原子能出版社, 1997: 257-294. |
Wu Z H. Experimental Method of Nuclear Physics [M]. 3rd ed. Beijing: Atomic Press, 1997: 257-294. | |
28 | Penoncello S G, Jacobsen R T, Goodwin A R H. A thermodynamic property formulation for cyclohexane[J]. International Journal of Thermophysics, 1995, 16(2): 519-531. |
29 | Lemmon E, Span R. Short fundamental equations of state for 20 industrial fluids[J]. Journal of Chemical & Engineering Data, 2006, 51: 785-850. |
30 | 孟现阳, 郑平军, 吴江涛. 碳酸二乙酯黏度和密度的实验测量及数据关联[J]. 化工学报, 2008, 59(11): 2695-2700. |
Meng X Y, Zheng P J, Wu J T. Measurements of viscosity and density of diethyl carbonate[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(11): 2695-2700. | |
31 | 朱山杉, 郎寒肖, 王晓坡. 改进的Tait方程用于预测高压液体密度[J]. 化学工程, 2019, 47(9): 55-58. |
Zhu S S, Lang H X, Wang X P. Improved Tait equation to calculate high pressure liquid densities[J]. Chemical Engineering (China), 2019, 47(9): 55-58. | |
32 | Feng S, Bi Q C, Liao W L. Liquid density measurement of n-decane with a random temperature signal cross-correlation densimeter at high temperatures and pressures[J]. Thermochimica Acta, 2022, 709: 179162. |
22 | 靳乐, 范玮, 周舟, 等. RP-3航空煤油的亚/超临界密度实测和计算方法研究[J]. 推进技术, 2015, 36(7): 1103-1109. |
Jin L, Fan W, Zhou Z, et al. Density measurement and calculation of RP-3 aviation kerosene at sub- and supercritical condition[J]. Journal of Propulsion Technology, 2015, 36(7): 1103-1109. | |
23 | 张星, 姚传奇, 蒋榕培, 等. 高能合成煤油GN-1性能研究[J]. 推进技术, 2021, 42(7): 1671-1680. |
Zhang X, Yao C Q, Jiang R P, et al. Performance of high energy synthetic kerosene GN-1[J]. Journal of Propulsion Technology, 2021, 42(7): 1671-1680. | |
24 | Yang Z Q, Bi Q C, Guo Y, et al. Design of a gamma densitometer for hydrocarbon fuel at high temperature and supercritical pressure[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3335-3343. |
25 | 曹冬冬, 郭亚军, 冯松, 等. 吸热型碳氢燃料高压低温密度测量实验研究[J]. 热能动力工程, 2017, 32(3): 28-32, 132. |
Cao D D, Guo Y J, Feng S, et al. Experimental study on density measurement of endothermic hydrocarbon fuels under high pressure and low temperature[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(3): 28-32, 132. | |
26 | 张家庆, 蒋榕培, 史伟康, 等. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[1] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
[2] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[3] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
[4] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
[5] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[6] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[7] | 武颖韬, 费立涵, 孔祥东, 王帜, 汤成龙, 黄佐华. 咪唑二氰胺离子液体掺混糠醇的自燃及推进性能[J]. 化工学报, 2024, 75(5): 2017-2025. |
[8] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[9] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[10] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[11] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[12] | 张劲, 郭志斌, 罗来明, 卢善富, 相艳. 5 kW重整甲醇高温质子交换膜燃料电池系统设计与性能[J]. 化工学报, 2024, 75(4): 1697-1704. |
[13] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[14] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[15] | 张领先, 刘斌, 邓琳, 任宇航. 基于改进TSO优化Xception的PEMFC故障诊断[J]. 化工学报, 2024, 75(3): 945-955. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||