1 |
Ju Y G, Maruta K. Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(6): 669-715.
|
2 |
Dreizler A, Böhm B. Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions[J]. Proceedings of the Combustion Institute, 2015, 35(1): 37-64.
|
3 |
Wan J L, Fan A W. Recent progress in flame stabilization technologies for combustion-based micro energy and power systems[J]. Fuel, 2021, 286: 119391.
|
4 |
Qian P, Liu M H. Influencing factors of wall temperature and flame stability of micro-combustors in micro-thermophotovoltaic and micro-thermoelectric systems[J]. Fuel, 2022, 310: 122436.
|
5 |
王业峰, 周俊虎, 赵庆辰, 等. 甲烷与正丁烷微小尺度催化燃烧性能比较[J]. 化工学报, 2017, 68(3): 896-902.
|
|
Wang Y F, Zhou J H, Zhao QC, et al. Comparison of catalytic combustion of methane and n-butane in microtube[J]. CIESC Journal, 2017, 68(3): 896-902.
|
6 |
杨宵, 丁锐, 李墨含, 等. 氧浓度对微通道内甲烷均相/非均相耦合反应特性的影响[J]. 化工学报, 2022, 73(12): 5427-5437.
|
|
Yang X, Ding R, Li M H, et al. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel[J]. CIESC Journal, 2022, 73(12): 5427-5437.
|
7 |
Kohse-Höinghaus K. Combustion, chemistry, and carbon neutrality[J]. Chemical Reviews, 2023, 123(8): 5139-5219.
|
8 |
隋然. 催化燃烧过程中的气相火焰[J]. 工程热物理学报, 2024, 45(5): 1534-1547.
|
|
Sui R. Gas-phase flames during catalytic combustion[J]. Journal of Engineering Thermophysics, 2024, 45(5): 1534-1547.
|
9 |
康涛, 朱权. TiN涂层及其抑制结焦性能的研究[J]. 化学研究与应用, 2021, 33(11): 2247-2252.
|
|
Kang T, Zhu Q. Investigation of TiN coating and its anti-coking performance[J]. Chemical Research and Application, 2021, 33(11): 2247-2252.
|
10 |
Ma T Y, Chen D W, Wang H, et al. Influence of thermal barrier coating on partially premixed combustion in internal combustion engine[J]. Fuel, 2021, 303(1): 121259.
|
11 |
Li F, Yang H L, Wang X H, et al. Effects of doping ceria on flame quenching in a narrow channel with zirconia-based functional coatings[J]. Chemical Engineering Journal, 2022, 446: 137216.
|
12 |
刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学, 2018, 11(4): 531-549.
|
|
Liu J R, Hu Z Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549.
|
13 |
Fan Y, Guo J Q, Lee M, et al. Quantitative evaluation of wall chemical effect in hydrogen flame using two-photon absorption LIF[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2361-2370.
|
14 |
蒋新生, 余彬彬, 徐建楠, 等. 基于OH-PLIF的狭长受限空间油气爆炸中间基团浓度分布研究[J]. 化工学报, 2020, 71(11): 5352-5360.
|
|
Jiang X S, Yu B B, Xu J N, et al. Study on concentration distribution of radical groups of gasoline-air explosion in long-narrow confined space based on OH-PLIF[J]. CIESC Journal, 2020, 71(11): 5352-5360.
|
15 |
Kobayashi H, Seyama K, Hagiwara H, et al. Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature[J]. Proceedings of the Combustion Institute, 2005, 30(1): 827-834.
|
16 |
Kim K T, Lee D H, Kwon S. Effects of thermal and chemical surface-flame interaction on flame quenching[J]. Combustion and Flame, 2006, 146(1/2): 19-28.
|
17 |
Sanchez-Sanz M, Fernandez-Galisteo D, Kurdyumov V N. Effect of the equivalence ratio, Damköhler number, Lewis number and heat release on the stability of laminar premixed flames in microchannels[J]. Combustion and Flame, 2014, 161(5): 1282-1293.
|
18 |
Westbrook C K, Adamczyk A A, Lavoie G A. A numerical study of laminar flame wall quenching[J]. Combustion and Flame, 1981, 40: 81-99.
|
19 |
费兆阳, 李磊, 成超, 等. 铈锆复合氧化物催化HCl氧化中相互作用机制[J]. 化工学报, 2018, 69(12): 5081-5089.
|
|
Fei Z Y, Li L, Cheng C, et al. Interaction between CeO2 and ZrO2 in HCl catalytic oxidation[J]. CIESC Journal, 2018, 69(12): 5081-5089.
|
20 |
Yang Z Z, Zhang N, Xu H D, et al. Boosting diesel soot catalytic combustion via enhancement of solid (catalyst)-solid (soot) contact by tailoring micrometer scaled sheet-type agglomerations of CeO2-ZrO2 catalyst[J]. Combustion and Flame, 2022, 235: 111700.
|
21 |
Li F, Yang H L, Deng R J, et al. OH-PLIF study on the mechanism regulating flame-wall interaction with catalytically active CeO2-ZrO2 coatings[J]. Combustion and Flame, 2023, 255: 112917.
|
22 |
Yang H L, Feng Y X, Wu Y Y, et al. A surface analysis-based investigation of the effect of wall materials on flame quenching[J]. Combustion Science and Technology, 2011, 183(5): 444-458.
|
23 |
Fan Y, Suzuki Y, Kasagi N. Ultra-thin quartz combustors for TPV power generator[C]//Proceedings Power MEMS. IEEE, 2008: 433-436.
|
24 |
Li F, Yang H L, Zeng X J, et al. Enhancing the flame stability in a slot burner using yttrium-doped zirconia coating[J]. Fuel, 2020, 262: 116502.
|
25 |
Yuasa S, Oshimi K, Nose H, et al. Concept and combustion characteristics of ultra-micro combustors with premixed flame[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2455-2462.
|
26 |
Saiki Y, Fan Y, Suzuki Y. Radical quenching of metal wall surface in a methane-air premixed flame[J]. Combustion and Flame, 2015, 162(10): 4036-4045.
|
27 |
Yamamoto K, Ozeki M, Hayashi N, et al. Burning velocity and OH concentration in premixed combustion[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1227-1235.
|
28 |
Miesse C, Masel R, Short M, et al. Experimental observations of methane-oxygen diffusion flame structure in a sub-millimetre microburner[J]. Combustion Theory and Modelling, 2005, 9(1): 77-92.
|
29 |
Zhu J J, van Ommen J G, Knoester A, et al. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas[J]. Journal of Catalysis, 2005, 230(2): 291-300.
|
30 |
Prakash S, Glumac N G, Shankar N, et al. OH concentration profiles over alumina, quartz, and platinum surfaces using laser-induced fluorescence spectroscopy in low-pressure hydrogen/oxygen flames[J]. Combustion Science and Technology, 2005, 177(4): 793-817.
|
31 |
Pfefferle W C, Pfefferle L D. Catalytically stabilized combustion[J]. Progress in Energy and Combustion Science, 1986, 12(1): 25-41.
|
32 |
Fan Y, Lin W R, Wan S, et al. Investigation of wall chemical effect using PLIF measurement of OH radical generated by pulsed electric discharge[J]. Combustion and Flame, 2018, 196: 255-264.
|