1 |
Köhrle J. Selenium, iodine and iron-essential trace elements for thyroid hormone synthesis and metabolism[J]. International Journal of Molecular Sciences, 2023, 24(4): 3393.
|
2 |
Etteieb S, Magdouli S, Zolfaghari M, et al. Monitoring and analysis of selenium as an emerging contaminant in mining industry: a critical review[J]. Science of the Total Environment, 2020, 698: 134339.
|
3 |
El-Ramady H, Abdalla N, Alshaal T, et al. Selenium in soils under climate change, implication for human health[J]. Environmental Chemistry Letters, 2015, 13(1): 1-19.
|
4 |
Ullah H, Liu G J, Yousaf B, et al. Developmental selenium exposure and health risk in daily foodstuffs: a systematic review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2018, 149: 291-306.
|
5 |
Tan L C, Nancharaiah Y V, van Hullebusch E D, et al. Selenium: environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886-907.
|
6 |
Banerjee M, Kalwani P, Chakravarty D, et al. Modulation of oxidative stress machinery determines the contrasting ability of cyanobacteria to adapt to Se(Ⅵ) or Se(Ⅳ)[J]. Plant Physiology and Biochemistry, 2024, 211: 108673.
|
7 |
鲍淳煜, 罗伟锋, 寿建昕, 等. 零价铁去除水中硒的研究进展[J]. 环境化学, 2022, 41(2): 719-728.
|
|
Bao C Y, Luo W F, Shou J X, et al. Research progress of removal selenium from aqueous solution by zero-valent iron[J]. Environmental Chemistry, 2022, 41(2): 719-728.
|
8 |
Lenz M, Lens P N L. The essential toxin: the changing perception of selenium in environmental sciences[J]. Science of the Total Environment, 2009, 407(12): 3620-3633.
|
9 |
Ponton D E, Graves S D, Fortin C, et al. Selenium interactions with algae: chemical processes at biological uptake sites, bioaccumulation, and intracellular metabolism[J]. Plants, 2020, 9(4): 528.
|
10 |
刘轩, 苏银皎, 滕阳, 等. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
|
|
Liu X, Su Y J, Teng Y, et al. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash[J]. CIESC Journal, 2022, 73(2): 923-932.
|
11 |
王雨红, 吕艳, 农敬义, 等. 铁粉还原脱除电解锰阳极液中的硒[J]. 化工学报, 2015, 66(9): 3698-3704.
|
|
Wang Y H, Lyu Y, Nong J Y, et al. Reductive removing selenium from electrolytic manganese anolyte with iron powder[J]. CIESC Journal, 2015, 66(9): 3698-3704.
|
12 |
Ali I, Shrivastava V. Recent advances in technologies for removal and recovery of selenium from (waste) water: a systematic review[J]. Journal of Environmental Management, 2021, 294: 112926.
|
13 |
Winkel L H E, Johnson C A, Lenz M, et al. Environmental selenium research: from microscopic processes to global understanding[J]. Environmental Science & Technology, 2012, 46(2): 571-579.
|
14 |
Wang Z L, Wang Y M, Gomes R L, et al. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms[J]. Journal of Hazardous Materials, 2022, 427: 128122.
|
15 |
López de Arroyabe Loyo R, Nikitenko S I, Scheinost A C, et al. Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles[J]. Environmental Science & Technology, 2008, 42(7): 2451-2456.
|
16 |
曹贝, 李锦祥, 关小红. 弱磁场强化零价铁对水中U(Ⅵ)去除效能[J]. 化工学报, 2017, 68(8): 3282-3290.
|
|
Cao B, Li J X, Guan X H. Enhancing reactivity of zerovalent iron toward U(Ⅵ) by weak magnetic field[J]. CIESC Journal, 2017, 68(8): 3282-3290.
|
17 |
Obiri-Nyarko F, Grajales-Mesa S J, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111: 243-259.
|
18 |
王承泽, 顾凯丽, 张晋华, 等. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206.
|
|
Wang C Z, Gu K L, Zhang J H, et al. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water[J]. CIESC Journal, 2023, 74(5): 2197-2206.
|
19 |
Yoon I H, Kim K W, Bang S, et al. Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 185-192.
|
20 |
赵雅光, 万俊锋, 王杰, 等. 零价铁(ZVI)去除水中的As(Ⅲ)[J]. 化工学报, 2015, 66(2): 730-737.
|
|
Zhao Y G, Wan J F, Wang J, et al. Removal of arsenite from aqueous environment by zero-valent iron (ZVI)[J]. CIESC Journal, 2015, 66(2): 730-737.
|
21 |
Wang Z L, Lv C W, Wang Y M, et al. Zero-valent iron (ZVI) facilitated in situ selenium (Se) immobilization and its recovery by magnetic separation: mechanisms and implications for microbial ecology[J]. Journal of Hazardous Materials, 2024, 473: 134591.
|
22 |
Fan P, Li L N, Sun Y K, et al. Selenate removal by Fe0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: a comparative study[J]. Water Research, 2019, 159: 375-384.
|
23 |
He X Y, Min X B, Peng T Y, et al. Mechanochemically activated microsized zero-valent iron/pyrite composite for effective hexavalent chromium sequestration in aqueous solution[J]. Journal of Chemical & Engineering Data, 2020, 65(4): 1936-1945.
|
24 |
Xu J, Tang J, Baig S A, et al. Enhanced dechlorination of 2,4-dichlorophenol by Pd/Fe-Fe3O4 nanocomposites[J]. Journal of Hazardous Materials, 2013, 244/245: 628-636.
|
25 |
Tang C L, Huang Y H, Zeng H, et al. Reductive removal of selenate by zero-valent iron: the roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms[J]. Water Research, 2014, 67: 166-174.
|
26 |
Sun Y K, Li J X, Huang T L, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review[J]. Water Research, 2016, 100: 277-295.
|
27 |
Liang L P, Yang W J, Guan X H, et al. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron[J]. Water Research, 2013, 47(15): 5846-5855.
|
28 |
Tang C L, Huang Y P, Zhang Z Q, et al. Rapid removal of selenate in a zero-valent iron/Fe3O4/Fe2+ synergetic system[J]. Applied Catalysis B: Environmental, 2016, 184: 320-327.
|
29 |
Klausen J, Troeber S P, Haderlein S B, et al. Reduction of substituted nitrobenzenes by Fe(Ⅱ) in aqueous mineral suspensions[J]. Environmental Science & Technology, 1995, 29(9): 2396-2404.
|
30 |
Bae S, Hanna K. Reactivity of nanoscale zero-valent iron in unbuffered systems: effect of pH and Fe(Ⅱ) dissolution[J]. Environmental Science & Technology, 2015, 49(17): 10536-10543.
|