化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1447-1462.DOI: 10.11949/0438-1157.20241052
梁铣1,2,3(
), 张晓燕1(
), 魏亦军2, 郑云芳2, 高全涵2, 徐迈1,2, 王凤武1,2(
)
收稿日期:2024-09-23
修回日期:2024-10-29
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
梁铣,王凤武
作者简介:梁铣(1985—),男,博士,副教授,lx226@ustc.edu.cn基金资助:
Xian LIANG1,2,3(
), Xiaoyan ZHANG1(
), Yijun WEI2, Yunfang ZHENG2, Quanhan GAO2, Mai XU1,2, Fengwu WANG1,2(
)
Received:2024-09-23
Revised:2024-10-29
Online:2025-04-25
Published:2025-05-12
Contact:
Xian LIANG, Fengwu WANG
摘要:
碱性膜燃料电池(AMFCs)因具备低成本及更快的氧还原动力学等特点备受关注。其中,作为离子传导介质和催化层黏结剂的碱性聚电解质是AMFCs中膜电极(MEA)的重要组成部分,其在高碱环境下的耐久性是保证AMFCs长期稳定运行的重要因素之一。综述了近些年针对碱性聚电解质耐久性的相关研究及其在AMFCs中的应用,分别总结了不同主链和阳离子基团对碱性聚电解质耐久性的影响机制,以期为碱性聚电解质分子结构的合理化设计提供参考。
中图分类号:
梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462.
Xian LIANG, Xiaoyan ZHANG, Yijun WEI, Yunfang ZHENG, Quanhan GAO, Mai XU, Fengwu WANG. Research progress on the durability of polyelectrolyte for alkaline membrane fuel cells[J]. CIESC Journal, 2025, 76(4): 1447-1462.
| 聚合物 | 主链 | 离子交换基团 | 80℃耐碱性(电导保留率) | 文献 |
|---|---|---|---|---|
| MTCP-50 | ![]() | ![]() | 1 mol·L-1 KOH 8000 h (94.3%) | [ |
| P(VCP10-TP90) | ![]() | ![]() | 1 mol·L-1 KOH 5000 h (93.8%) | [ |
| NM-LPF-OH | ![]() | ![]() | 1 mol·L-1 KOH 4320 h (95℃, 100%) | [ |
| PBPA-b-BPP | ![]() | ![]() | 2 mol·L-1 KOH 3750 h | [ |
| qPTTP-7 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (86%) | [ |
| Cr-QPPV-2.51 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (95%) | [ |
| PBSU | ![]() | ![]() | 3 mol·L-1 KOH 2000 h (94.5%) | [ |
| QPATP-40TDP | ![]() | ![]() | 6 mol·L-1 KOH 1000 h (93%) | [ |
| PPTQ | ![]() | ![]() | 10 mol·L-1 1800 h (100%) | [ |
| PTPFQ-I-85 | ![]() | ![]() | 10 mol·L-1 NaOH 1600 h (100%) | [ |
| AAEM | ![]() | ![]() | 1 mol·L-1 KOH 720 h (95%) | [ |
| BPNP | ![]() | ![]() | 1 mol·L-1 KOH 1000 h (98.5%) | [ |
表1 部分碱性聚电解质的耐碱稳定性
Table 1 Alkali stability of some alkaline polyelectrolytes
| 聚合物 | 主链 | 离子交换基团 | 80℃耐碱性(电导保留率) | 文献 |
|---|---|---|---|---|
| MTCP-50 | ![]() | ![]() | 1 mol·L-1 KOH 8000 h (94.3%) | [ |
| P(VCP10-TP90) | ![]() | ![]() | 1 mol·L-1 KOH 5000 h (93.8%) | [ |
| NM-LPF-OH | ![]() | ![]() | 1 mol·L-1 KOH 4320 h (95℃, 100%) | [ |
| PBPA-b-BPP | ![]() | ![]() | 2 mol·L-1 KOH 3750 h | [ |
| qPTTP-7 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (86%) | [ |
| Cr-QPPV-2.51 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (95%) | [ |
| PBSU | ![]() | ![]() | 3 mol·L-1 KOH 2000 h (94.5%) | [ |
| QPATP-40TDP | ![]() | ![]() | 6 mol·L-1 KOH 1000 h (93%) | [ |
| PPTQ | ![]() | ![]() | 10 mol·L-1 1800 h (100%) | [ |
| PTPFQ-I-85 | ![]() | ![]() | 10 mol·L-1 NaOH 1600 h (100%) | [ |
| AAEM | ![]() | ![]() | 1 mol·L-1 KOH 720 h (95%) | [ |
| BPNP | ![]() | ![]() | 1 mol·L-1 KOH 1000 h (98.5%) | [ |
| 1 | Sekar S, Aqueel Ahmed A T, Sim D H, et al. Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40317-40326. |
| 2 | Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200. |
| 3 | Hyun J, Kim H T. Powering the hydrogen future: current status and challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2023, 16(12): 5633-5662. |
| 4 | Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818. |
| 5 | Ul Hassan N, Mandal M, Huang G, et al. Achieving high-performance and 2000 h stability in anion exchange membrane fuel cells by manipulating ionomer properties and electrode optimization[J]. Advanced Energy Materials, 2020, 10(40): 2001986. |
| 6 | Hu C, Kang H W, Jung S W, et al. Stabilizing the catalyst layer for durable and high performance alkaline membrane fuel cells and water electrolyzers[J]. ACS Central Science, 2024, 10(3): 603-614. |
| 7 | 万磊, 赖忆铭, 王保国. 离子交换膜界面结构对膜电极性能影响的研究进展[J]. 膜科学与技术, 2019, 39(4): 132-141, 147. |
| Wan L, Lai Y M, Wang B G. Recent progress in patterning ion exchange membrane interface for membrane electrode assembly[J]. Membrane Science and Technology, 2019, 39(4): 132-141, 147. | |
| 8 | Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
| 9 | Zhang J F, Zhu W K, Huang T, et al. Recent insights on catalyst layers for anion exchange membrane fuel cells[J]. Advanced Science, 2021, 8(15): 2100284. |
| 10 | Malek K, Eikerling M, Wang Q P, et al. Self-organization in catalyst layers of polymer electrolyte fuel cells[J]. The Journal of Physical Chemistry C, 2007, 111(36): 13627-13634. |
| 11 | Abeleda J M A, Espiritu R. The status and prospects of hydrogen and fuel cell technology in the Philippines[J]. Energy Policy, 2022, 162: 112781. |
| 12 | Saebea D, Chaiburi C, Authayanun S. Model based evaluation of alkaline anion exchange membrane fuel cells with water management[J]. Chemical Engineering Journal, 2019, 374: 721-729. |
| 13 | Mustain W E, Chatenet M, Page M, et al. Durability challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2020, 13(9): 2805-2838. |
| 14 | Gottesfeld S, Dekel D R, Page M, et al. Anion exchange membrane fuel cells: current status and remaining challenges[J]. Journal of Power Sources, 2018, 375: 170-184. |
| 15 | Xue J D, Douglin J C, Yassin K, et al. High-temperature anion-exchange membrane fuel cells with balanced water management and enhanced stability[J]. Joule, 2024, 8(5): 1457-1477. |
| 16 | Ma X Q, Liu A D, Si J T, et al. Hydrophobicity regulation of hyperbranched poly(aryl piperidine) anion exchange membranes for fuel cells[J]. Macromolecules, 2024, 57(19): 9346-9354. |
| 17 | Ma X Q, Xiang Q, Yuan W, et al. Localized stacked hyper branched anion exchange membrane for fuel cell[J]. Journal of Membrane Science, 2024, 694: 122432. |
| 18 | Lu X L, Ma X Q, Yuan W, et al. Microcrystalline-induced physical-cross-linking toward a high performance hyper-branched anion exchange membrane[J]. Macromolecules, 2024, 57(4): 1744-1750. |
| 19 | 付凤艳, 邢广恩.碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52. |
| Fu F Y, Xing G E. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. | |
| 20 | Chen N J, Lee Y M. Anion exchange polyelectrolytes for membranes and ionomers[J]. Progress in Polymer Science, 2021, 113: 101345. |
| 21 | 杨正金, 左培培, 李圆圆, 等. 面向燃料电池和液流电池的高性能离子交换膜[J]. 膜科学与技术, 2021, 41(6): 162-171, 181. |
| Yang Z J, Zuo P P, Li Y Y, et al. Advanced ion exchange membranes for fuel cells and aqueous flow batteries[J]. Membrane Science and Technology, 2021, 41(6): 162-171, 181. | |
| 22 | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
| Zhang H M, Lu J Y, Wang S F. Research progress on molecular structure of anion exchange membrane for fuel cells[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. | |
| 23 | 袁伟, 曾玲平, 王建川, 等. 燃料电池阴离子交换膜高效离子传输通道构建进展[J]. 化工学报, 2019, 70(10): 3764-3775. |
| Yuan W, Zeng L P, Wang J C, et al. Progress in construction of high efficient ion transport channels for anion exchange membranes fuel cell[J]. CIESC Journal, 2019, 70(10): 3764-3775. | |
| 24 | Arges C G, Ramani V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(7): 2490-2495. |
| 25 | Xu F, Su Y, Lin B C. Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation[J]. Frontiers in Materials, 2020, 7: 4. |
| 26 | Sun Z, Lin B C, Yan F. Anion-exchange membranes for alkaline fuel-cell applications: the effects of cations[J]. ChemSusChem, 2018, 11(1): 58-70. |
| 27 | Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191. |
| 28 | Mohanty A D, Bae C. Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(41): 17314-17320. |
| 29 | Meek K M, Elabd Y A. Alkaline chemical stability of polymerized ionic liquids with various cations[J]. Macromolecules, 2015, 48(19): 7071-7084. |
| 30 | Favero S, Stephens I E L, Titirci M M. Anion exchange ionomers: design considerations and recent advances — an electrochemical perspective[J]. Advanced Materials, 2024, 36(8): 2308238. |
| 31 | Zhang H B, He X Y, Feng H H, et al. A poly(binaphthyl-co-terphenyl quinuclidinium) anion exchange membrane with excellent alkaline stability and anion conductivity[J]. Journal of Materials Chemistry A, 2024, 12(35): 23570-23576. |
| 32 | Han L, Gong S T, Zhang X L, et al. Four-arm star-shaped high-performance poly(aryl piperidine) anion exchange membranes for fuel cells[J]. Journal of Materials Chemistry A, 2024, 12(11): 6341-6350. |
| 33 | Maurya S, Shin S H, Kim Y, et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries[J]. RSC Advances, 2015, 5(47): 37206-37230. |
| 34 | Fujimoto C, Kim D S, Hibbs M, et al. Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells[J]. Journal of Membrane Science, 2012, 423: 438-449. |
| 35 | Choe Y K, Fujimoto C, Lee K-S, et al. Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: a computational and experimental study[J]. Chemistry of Materials, 2014, 26(19): 5675-5682. |
| 36 | Mohanty A D, Tignor S E, Krause J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J]. Macromolecules, 2016, 49(9): 3361-3372. |
| 37 | Clark T J, Robertson N J, Kostalik H A, et al. A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer[J]. Journal of the American Chemical Society, 2009, 131(36): 12888-12889. |
| 38 | Mandal M, Huang G, Kohl P A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: applications in anion-exchange membrane fuel cells[J]. Journal of Membrane Science, 2019, 570: 394-402. |
| 39 | Huang G, Mandal M, Peng X, et al. Composite poly(norbornene) anion conducting membranes for achieving durability, water management and high power (3.4 W/cm2) in hydrogen/oxygen alkaline fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(10): F637-F644. |
| 40 | Mandal M, Huang G, Hassan N U, et al. The importance of water transport in high conductivity and high-power alkaline fuel cells[J]. Journal of the Electrochemical Society, 2019, 167(5): 054501. |
| 41 | Wang L Q, Peng X, Mustain W E, et al. Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance[J]. Energy & Environmental Science, 2019, 12(5): 1575-1579. |
| 42 | Wang L Q, Brink J J, Liu Y, et al. Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability[J]. Energy & Environmental Science, 2017, 10(10): 2154-2167. |
| 43 | Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4: 392-398. |
| 44 | Chen N J, Wang H H, Kim S P, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells[J]. Nature Communications, 2021, 12: 2367. |
| 45 | Song W J, Peng K, Xu W, et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices[J]. Nature Communications, 2023, 14(1): 2732. |
| 46 | Ryoo G W, Shin S-H, Song I W, et al. Poly(aryl piperidium)-based AEMs utilizing spirobifluorene as a branching agent[J]. Advanced Functional Materials, 2024, 2408545. |
| 47 | Zhang H Q, Xu W, Song W J, et al. High-performance spiro-branched polymeric membranes for sustainability applications[J]. Nature Sustainability, 2024, 7: 910-919. |
| 48 | Wu X Y, Chen N J, Klok H A, et al. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2022, 134(7): e202114892. |
| 49 | Hu C, Kang N Y, Kang H W, et al. Triptycene branched poly(aryl-co-aryl piperidinium) electrolytes for alkaline anion exchange membrane fuel cells and water electrolyzers[J]. Angewandte Chemie International Edition, 2024, 63(3): e202316697. |
| 50 | Peng H Q, Li Q H, Hu M X, et al. Alkaline polymer electrolyte fuel cells stably working at 80℃[J]. Journal of Power Sources, 2018, 390: 165-167. |
| 51 | Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3): 513-523. |
| 52 | Bakvand P M, Jannasch P. Poly(arylene alkylene)s with pendent benzyl-tethered ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2023, 668: 121229. |
| 53 | Zeng M Y, He X Y, Wen J, et al. N-methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability[J]. Advanced Materials, 2023, 35(51): 2306675. |
| 54 | Wen J, He X Y, Zhang G B, et al. Poly(aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability[J]. Science China Materials, 2024, 67(3): 965-973. |
| 55 | Hugar K M, Kostalik H A, Coates G W. Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships[J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737. |
| 56 | You W, Padgett E, MacMillan S N, et al. Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans-cyclooctene derivatives[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20): 9729-9734. |
| 57 | Xue B X, Wang F, Zheng J F, et al. Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations[J]. Molecular Systems Design & Engineering, 2019, 4(5): 1039-1047. |
| 58 | Gu S, Wang J H, Kaspar R B, et al. Permethyl cobaltocenium (Cp*2Co+) as an ultra-stable cation for polymer hydroxide-exchange membranes[J]. Scientific Reports, 2015, 5: 11668. |
| 59 | Zhu T Y, Sha Y, Firouzjaie H A, et al. Rational synthesis of metallo-cations toward redox- and alkaline-stable metallo-polyelectrolytes[J]. Journal of the American Chemical Society, 2020, 142(2): 1083-1089. |
| 60 | Ge X L, He Y B, Guiver M D, et al. Alkaline anion-exchange membranes containing mobile ion shuttles[J]. Advanced Materials, 2016, 28(18): 3467-3472. |
| 61 | Chen Y N, Li Z M, Chen N J, et al. Preparation and characterization of cross-linked polyphosphazene-crown ether membranes for alkaline fuel cells[J]. Electrochimica Acta, 2017, 258: 311-321. |
| 62 | Omasta T J, Park A M, LaManna J M, et al. Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs[J]. Energy & Environmental Science, 2018, 11(3): 551-558. |
| 63 | Yu W S, Xu Y, Shen X H, et al. Ionomer boosts catalyst layer oxygen transport and membrane ion conduction for fuel cells[J]. Next Energy, 2024, 3: 100104. |
| 64 | Liang X, Shehzad M A, Zhu Y, et al. Ionomer cross-linking immobilization of catalyst nanoparticles for high performance alkaline membrane fuel cells[J]. Chemistry of Materials, 2019, 31(19): 7812-7820. |
| 65 | Liang X, Ge X L, He Y B, et al. 3D-zipped interface: in situ covalent-locking for high performance of anion exchange membrane fuel cells[J]. Advanced Science, 2021, 8(22): 2102637. |
| 66 | Zhu Y, Ding L, Liang X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells[J]. Energy & Environmental Science, 2018, 11(12): 3472-3479. |
| 67 | Xiao L, Zhang H, Jana T, et al. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications[J]. Fuel Cells, 2005, 5(2): 287-295. |
| 68 | Yuan W, Zeng L P, Zhang T C, et al. High performance anion exchange membranes with confined sub-2-nm ion channel[J]. Advanced Functional Materials, 2023, 33(36): 2307041. |
| 69 | Liu X, Xie N, Xue J D, et al. Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells[J]. Nature Energy, 2022, 7: 329-339. |
| 70 | Ma Y C, Hu C, Yi G Q, et al. Durable multiblock poly(biphenyl alkylene) anion exchange membranes with microphase separation for hydrogen energy conversion[J]. Angewandte Chemie International Edition, 2023, 62(41): e202311509. |
| 71 | Zhang F, Zhang Y, Sun L X, et al. A π-conjugated anion-exchange membrane with an ordered ion-conducting channel via the McMurray coupling reaction[J]. Angewandte Chemie, 2023, 135(4): e202215017. |
| 72 | Zhu H, Li Y X, Chen N J, et al. Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5]undecanium) for long-lifetime anion exchange membrane applications[J]. Journal of Membrane Science, 2019, 590: 117307. |
| 73 | Su X, Nan S B, Gu Y, et al. Diphenylanthracene-based ion exchange membranes with high conductivity and robust chemical stability for acid-alkaline amphoteric water electrolysis[J]. Chemical Engineering Journal, 2024, 482: 149056. |
| 74 | Mandal M, Huang G, Kohl P A. Highly conductive anion-exchange membranes based on cross-linked poly(norbornene): vinyl addition polymerization[J]. ACS Applied Energy Materials, 2019, 2(4): 2447-2457. |
| [1] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
| [2] | 刘雷, 张粤, 李霞, 雷惊雷, 李凌杰. 铝合金表面耐久性超疏水防护膜的制备与表征[J]. 化工学报, 2020, 71(10): 4750-4759. |
| [3] | 刘美玲, 刘军, 王琴, 谈勇, 李保安. 聚电解质静电沉积改性制备高性能反渗透膜[J]. 化工学报, 2018, 69(2): 830-839. |
| [4] | 黄雪, 崔英德, 尹国强, 冯光炷, 吴梓敏. 月桂酸-膨胀石墨复合相变材料的制备及性能[J]. CIESC Journal, 2015, 66(S1): 370-374. |
| [5] | 徐文华,张丽东,赵 利,陈寿花,王 丽,刘伟良. 耐久性超疏水表面研究进展[J]. 化工进展, 2012, 31(10): 2260-2264. |
| [6] | 余 意,潘 牧. 质子交换膜燃料电池启停控制策略研究进展 [J]. CIESC Journal, 2010, 29(10): 1857-. |
| [7] | 李鸣明;姚善泾. NaCS/PDMDAAC聚电解质复合膜的制备及静态接触角测定 [J]. CIESC Journal, 2009, 60(3): 654-659. |
| [8] | 史学峰, 吴文辉, 宫瑞英, 王建全. 基于香豆胶的疏水改性阴离子聚电解质溶液性能 [J]. 化工学报, 2008, 59(5): 1325-1332. |
| [9] | 张立彦,李作为,黎梅兰,曾庆孝. 丙烯酸接枝壳聚糖水凝胶的制备及其pH敏感性 [J]. CIESC Journal, 2008, 27(4): 585-. |
| [10] | 严捍东,麻秀星,黄国晖. 废橡胶集料对水泥基材料变形和耐久性影响的研究现状 [J]. CIESC Journal, 2008, 27(3): 395-. |
| [11] | 陈 国,姚善泾,方柏山. PEC生物微胶囊研究进展 [J]. CIESC Journal, 2007, 26(8): 1093-. |
| [12] | 郁彩红; 虞大红; 秦原; 刘洪来; 胡英. NaCl在聚电解质溶液中活度系数的实验测定 [J]. CIESC Journal, 2001, 52(8): 738-741. |
| [13] | 季君晖. 粒子在溶液中吸附聚电解质行为及粒子间的相互作用(Ⅰ)模型建立 [J]. CIESC Journal, 2001, 52(3): 227-231. |
| [14] | 方道斌,郭睿威,侯永兴,付小万. 水解聚丙烯酰胺盐水溶液表观粘度的数学模拟(Ⅳ)──存在二价金属离子时的通用MHS方程式 [J]. CIESC Journal, 1998, 49(1): 11-16. |
| [15] | 方道斌,郭睿威,周少刚,聂贵权,程杰成. 水解聚丙烯酰胺盐水溶液表观粘度的数学模拟(Ⅲ)——表观粘度与剪切速率的通用关系式 [J]. CIESC Journal, 1997, 48(1): 80-84. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号