化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4750-4759.DOI: 10.11949/0438-1157.20200591
收稿日期:
2020-05-15
修回日期:
2020-05-27
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
李凌杰
作者简介:
刘雷(1989—),男,博士研究生,基金资助:
Lei LIU(),Yue ZHANG,Xia LI,Jinglei LEI,Lingjie LI()
Received:
2020-05-15
Revised:
2020-05-27
Online:
2020-10-05
Published:
2020-10-05
Contact:
Lingjie LI
摘要:
通过酸刻蚀-沸水浴处理构筑微纳米分级结构,进而通过喷涂含有磷酸铝胶黏剂(AP)和低表面能物质——全氟辛基三氯硅烷(PFOTS)的悬浮液增强结合力并降低表面能,从而在国产7B04铝合金表面制备了耐久性超疏水防护膜。利用场发射扫描电子显微镜(FESEM)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FTIR)、接触角测试仪(CA)、电化学阻抗谱(EIS)等技术以及多种环境模拟实验对样品进行了表征,结果显示,制备的防护膜表面水静态接触角(WCA)高达158.4°,滑动角(SA)为0°,呈现出超疏水和低黏附性;膜层电阻(Rc)约为101.55 kΩ·cm2,在NaCl腐蚀介质中的电荷转移电阻(Rt)增大了近2个数量级,表现出优异的防护性能;样品可以经受多种破坏,具有理想的机械耐久性、化学耐久性和环境耐久性。
中图分类号:
刘雷, 张粤, 李霞, 雷惊雷, 李凌杰. 铝合金表面耐久性超疏水防护膜的制备与表征[J]. 化工学报, 2020, 71(10): 4750-4759.
Lei LIU, Yue ZHANG, Xia LI, Jinglei LEI, Lingjie LI. Preparation and characterization of durable superhydrophobic protective coatings on aluminum alloy[J]. CIESC Journal, 2020, 71(10): 4750-4759.
Sample | Rs/(Ω·cm2) | Rc/(kΩ·cm2) | Cc/(μF·cm-2) | Rt/(kΩ·cm2) | Cdl/(μF·cm-2) |
---|---|---|---|---|---|
untreated 7B04Al | 8.96 | — | — | 2.14 | 9.28 |
superhydrophobic 7B04Al | 8.79 | 101.55 | 0.45 | 150.98 | 9.26 |
表1 解析图6(a)中电化学阻抗谱所得的各参数值
Table 1 Electrochemical parameters derived from EIS Nyquist diagrams shown in Fig.6(a)
Sample | Rs/(Ω·cm2) | Rc/(kΩ·cm2) | Cc/(μF·cm-2) | Rt/(kΩ·cm2) | Cdl/(μF·cm-2) |
---|---|---|---|---|---|
untreated 7B04Al | 8.96 | — | — | 2.14 | 9.28 |
superhydrophobic 7B04Al | 8.79 | 101.55 | 0.45 | 150.98 | 9.26 |
24 | Yoganandan G, Balaraju J N, William G V K. The Surface and electrochemical analysis of permanganate based conversion coating on alclad and unclad 2024 Alloy[J]. Applied Surface Science, 2012, 258: 8880-8888. |
25 | Kloprogge J T, Duong L V, Wood B J, et al. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-) boehmite[J]. Journal of Colloid and Interface Science, 2006, 296: 572-576. |
26 | Vignal V, Krawiec H, Heintz O, et al. Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spectroscopy[J]. Corrosion Science, 2013, 67: 109-117. |
27 | Liu Y, Li S Y, Wang Y M, et al. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: wettability and corrosion inhibition[J]. Journal of Colloid and Interface Science, 2016, 478: 164-171. |
28 | Zhang X, Zhang P Y, Wu Z S, et al. Facile fabrication of stable superhydrophobic films on aluminum substrates[J]. Journal of Materials Science, 2012, 47(6): 2757-2762. |
29 | Jafari R, Menini R, Farzaneh M. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings[J]. Applied Surface Science, 2010, 257(5): 1540-1543. |
30 | Li L J, Zhang Y Z, Lei J L, et al. Water-only hydrothermal method: a generalized route for environmentally-benign and cost-effective construction of superhydrophilic surfaces with biomimetic micronanostructures on metals and alloys[J]. Chemical Communications, 2014, 50(56): 7416-7419. |
31 | Li W Q, Shi L, Zhang J Y, et al. Double-layered surface decoration of flaky aluminum pigments with zinc aluminum phosphate and phytic acid-aluminum complexes for high-performance waterborne coatings[J]. Powder Technology, 2020, 362: 462-473. |
32 | Chen T J, Wu Z Z, Wang X D A, et al. Hierarchical lamellar aluminophosphate materials with porosity as ecofriendly inorganic adhesive for wood-based boards[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6273-6280. |
33 | Li L J, Huang T, Lei J L, et al. Robust biomimetic-structural superhydrophobic surface on aluminum alloy[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1449-1457. |
34 | Jia Y L, Chen L, Feng X Z, et al. Tribological behavior of molybdenum disulfide bonded solid lubricating coatings cured with organosiloxane-modified phosphate binder[J]. RSC Advances, 2015, 5(85): 69606-69615. |
35 | 郝瑞华. 磷酸盐基高温粘结剂的制备及其粘结性能研究[D]. 天津: 天津大学, 2012. |
1 | 徐默雷. 铝合金材料的应用与开发潜力[J]. 当代化工研究, 2018, 10: 132-133. |
Xu M L. Application and development potential of aluminum alloy materials[J]. Chenmical Intermediate, 2018, 10: 132-133. | |
35 | Hao R H. The preparation and properties discussion of the phosphate adhesives[D]. Tianjin: Tianjin University, 2012. |
36 | Michailidis N, Stergioudi F, Maliaris G, et al. Influence of galvanization on the corrosion fatigue performance of high-strength steel[J]. Surface & Coatings Technology, 2014, 259: 456-464. |
37 | 刘雷, 张新芳, 雷惊雷, 等. 镁合金表面自清洁、自修复防护膜研究[J]. 表面技术, 2019, 48(3): 27-33. |
Liu L, Zhang X F, Lei J L, et al. Self-cleaning and self-healing protective coating on magnesium alloy[J]. Surface Technology, 2019, 48(3):27-33. | |
2 | 沈国柱. 高强度铝合金的研究现状及发展趋势[J]. 科技经济市场, 2016, 3: 30. |
Shen G Z. Research status and development trend of high strength aluminum alloy[J]. Science and Technology Economic Market, 2016, 3: 30. | |
3 | 赵立华. 超高强度铝合金研究现状及发展趋势[J]. 四川兵工学报, 2011, 10: 147-150. |
Zhao L H. Research status and development trend of ultra high strength aluminum alloy[J]. Journal of Sichuan Military Engineering, 2011, 10: 147-150. | |
4 | Chen Y J, Liu C C, Zhou J, et al. Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy[J]. Journal of Alloys and Compounds, 2019, 772: 1-14. |
5 | Santa C P, Izagirre U, Belaustegi Y, et al. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications[J]. Applied Surface Science, 2015, 345: 24-35. |
6 | 余存烨. 铝在化工应用中的腐蚀与防护[J]. 石油化工腐蚀与防护, 2008, 25(6): 45-48. |
Yu C Y. Corrosion and protection of aluminum in chemical industry[J]. Corrosion & Protection in Petrochemical Industry, 2008, 25(6): 45-48. | |
7 | Lamaka S V, Zheludkevich M L, Yasakau K A, et al. High effective organic corrosion inhibitors for 2024 aluminium alloy[J]. Electrochimica Acta, 2007, 52 (25): 7231-7247. |
8 | 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, 2019, 34(11): 1133-1144. |
Tong W, Xiong D S. Bioinspired superhydrophobic materials: progress and functional application[J]. Journal of Inorganic Materials, 2019, 34(11): 1133-1144. | |
9 | Ghasemlou M, Daver F, Ivanova E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market[J]. Journal of Materials Chemistry A, 2019, 7(28): 16643-16670. |
10 | Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials[J]. ACS Central Science, 2018, 4(9): 1102-1112. |
11 | Zhang S N, Huang J Y, Cheng Y, et al. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: concept, mechanism, and design[J]. Small, 2017, 13 (48): 1-20. |
12 | Emelyanenko A M, Boinovich L B, Bezdomnikov A A, et al. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24210-24219. |
13 | Xu C L, Song F, Wang X L, et al. Surface modification with hierarchical CuO arrays toward a flexible, durable superhydrophobic and self-cleaning material[J]. Chemical Engineering Journal, 2017, 313: 1328-1334. |
14 | Sutha S, Suresh S, Raj B, et al. Transparent alumina based superhydrophobic self-cleaning coatings for solar cell cover glass applications[J]. Solar Energy Materials and Solar Cells, 2017, 165: 128-137. |
15 | Hwang G B, Patir A, Page K, et al. Buoyancy increase and drag-reduction through a simple superhydrophobic coating[J]. Nanoscale, 2017, 9(22): 7588-7594. |
16 | Tanvir Ahmmed K M, Kietzig A M. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces[J]. Soft Matter, 2016, 12(22): 4912-4922. |
17 | Liu L, Lei J L, Li L J, et al. Robust rare-earth-containing superhydrophobic coatings for strong protection of magnesium and aluminum alloys[J]. Advanced Materials Interfaces, 2018, 5(16): 1800213. |
18 | Ran M R, Zheng W Y, Wang H M. Fabrication of superhydrophobic surfaces for corrosion protection: a review[J]. Materials Science and Technology, 2019, 35(3): 313-326. |
19 | Zhang D W, Qian, H C, Wang L T, et al. Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments[J]. Corrosion Science, 2016, 103: 230-241. |
20 | Li X W, Zhang Q X, Guo Z, et al. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate[J]. Applied Surface Science, 2015, 342: 76-83. |
21 | 李松梅, 周思卓, 刘建华. 铝合金表面原位自组装超疏水膜层的制备及耐蚀性能[J]. 物理化学学报, 2009, 25(12): 2581-2589. |
Li S M, Zhou S Z, Liu J H. Fabrication and anti-corrosion property of in situ self-assembled super-hydrophobic films on aluminum alloys[J]. Acta Physico-Chimica Sinica, 2009, 25(12): 2581-2589. | |
22 | 9e2. Standard test methods for measuring adhesion by tape Test[S]. ASTM International, 2009. |
23 | Shen S C, Chen Q, Chow P S, et al. Steam-assisted solid wet-gel synthesis of high quality nanorods of boehmite and alumina[J]. Journal of Physical Chemistry C, 2007, 111(2): 700-707. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[4] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[8] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[9] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[10] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[11] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[12] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[13] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
[14] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
[15] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||