化工学报 ›› 2025, Vol. 76 ›› Issue (6): 3093-3103.DOI: 10.11949/0438-1157.20241118
彭新艳1(), 刘云鸿1(
), 陈凌宇1,2, 韦跃兰1, 陈淑琴1, 胡柱东3
收稿日期:
2024-10-09
修回日期:
2024-12-03
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
刘云鸿
作者简介:
彭新艳(1985—),女,博士,副教授,pengxinyan@qztc.edu.cn
基金资助:
Xinyan PENG1(), Yunhong LIU1(
), Lingyu CHEN1,2, Yuelan WEI1, Shuqin CHEN1, Zhudong HU3
Received:
2024-10-09
Revised:
2024-12-03
Online:
2025-06-25
Published:
2025-07-09
Contact:
Yunhong LIU
摘要:
超高交联聚苯乙烯树脂可作为血液灌流吸附剂,在临床血液灌流疾病治疗领域发挥重要作用。然而,目前临床使用的超高交联聚苯乙烯树脂,存在制备过程烦琐、毒性大等问题,有待进一步地改进和优化。采用二甲氧基甲烷(FDA)和二乙氧基甲烷(DTM)两种不同外交联剂对预交联聚苯乙烯微球P(St-DVB)进行一步法外交联反应,制备出超高交联聚苯乙烯吸附树脂HCP-FDA和HCP-DTM。利用红外光谱、光电子能谱、扫描电子显微镜及气体吸附法等表征了吸附树脂的化学结构和微观孔结构。结果表明,小分子外交联剂可有效实现树脂内部的化学交联,所制备的HCP-FDA和HCP-DTM具有多级层次分布的三维纳米网络结构。吸附实验结果表明,所制备的HCP-FDA和HCP-DTM对尿毒症中大分子毒素具有优异的吸附性能,同时,展示出较好的血液相容性,有望作为一种全血灌流吸附剂,为临床尿毒症血液灌流净化治疗提供新型技术方案。
中图分类号:
彭新艳, 刘云鸿, 陈凌宇, 韦跃兰, 陈淑琴, 胡柱东. 小分子外交联法制备超高交联聚苯乙烯血液灌流吸附剂[J]. 化工学报, 2025, 76(6): 3093-3103.
Xinyan PENG, Yunhong LIU, Lingyu CHEN, Yuelan WEI, Shuqin CHEN, Zhudong HU. Preparation of hypercrosslinked polystyrene hemosorbents based on small-molecule external cross-linkers[J]. CIESC Journal, 2025, 76(6): 3093-3103.
图1 (a)HCP-FAD和HCP-DTM的合成路线示意图;(b)基于FDA傅克烷基化的反应机理
Fig.1 (a) Schematic diagram of the route to fabricate the HCP-FAD and HCP-DTM; (b) The possible mechanism of Friedel-Crafts reactions based on FDA crosslinker
图3 不同样品的SEM图片:(a) P(St-DVB);(b) HCP-FDA;(c) HCP-DTM(中间为样品表面,右侧为样品横截面)
Fig.3 SEM images of (a) P(St-DVB), (b) HCP-FDA and (c) HCP-DTM (middle are the surface zone, right are the cross-section zone)
图4 P(St-DVB)、HCP-FDA和HCP-DTM样品的氮气吸附脱附曲线(a)和孔径分布情况(b)
Fig.4 N2 adsorption-desorption isotherms (a), micropore size distributions (b) of P(St-DVB), HCP-FDA and HCP-DTM calculated by the NLDFT method
Sample | P(St-DVB) | HCP-FDA | HCP-DTM | ||
---|---|---|---|---|---|
specific surface area/(m2/g) | SBET | 102 | 738 | 625 | |
Smicro(0.35~2.00) | 0 | 501 | 417 | ||
Smeso | 2~10 | 58 | 281 | 244 | |
10~50 | 58 | 86 | 62 | ||
Smacro(50~100) | 9 | 4 | 16 | ||
pore volume/(cm3/g) | VP | 0.5212 | 1.0522 | 0.9101 | |
Vmicro(0.35~2.00) | 0 | 0.2182 | 0.1789 | ||
Vmeso | 2~10 | 0.0540 | 0.2254 | 0.1880 | |
10~50 | 0.3342 | 0.5629 | 0.3433 | ||
Vmacro(50~100) | 0.1304 | 0.0854 | 0.2355 | ||
Average pore size/nm | 20.45 | 5.70 | 5.82 |
表1 P(St-DVB)、HCP-FDA和HCP-DTM树脂的孔结构参数
Table 1 Textural properties of P(St-DVB), HCP-FDA and HCP-DTM
Sample | P(St-DVB) | HCP-FDA | HCP-DTM | ||
---|---|---|---|---|---|
specific surface area/(m2/g) | SBET | 102 | 738 | 625 | |
Smicro(0.35~2.00) | 0 | 501 | 417 | ||
Smeso | 2~10 | 58 | 281 | 244 | |
10~50 | 58 | 86 | 62 | ||
Smacro(50~100) | 9 | 4 | 16 | ||
pore volume/(cm3/g) | VP | 0.5212 | 1.0522 | 0.9101 | |
Vmicro(0.35~2.00) | 0 | 0.2182 | 0.1789 | ||
Vmeso | 2~10 | 0.0540 | 0.2254 | 0.1880 | |
10~50 | 0.3342 | 0.5629 | 0.3433 | ||
Vmacro(50~100) | 0.1304 | 0.0854 | 0.2355 | ||
Average pore size/nm | 20.45 | 5.70 | 5.82 |
图6 (a) P(St-DVB)、HCP-DTM和HCP-FDA样品的XPS谱图;(b) O 1s区域局部放大图;(c) HCP-FDA的O 1s XPS谱图;(d) HCP-DTM的O 1s XPS谱图
Fig.6 (a)Survey XPS spectra of P(St-DVB), HCP-DTM and HCP-FDA; (b) Highly magnified micrographs of the O 1s regions; (c) O 1s XPS spectra of HCP-FDA; (d) O 1s XPS spectra of HCP-DTM
图7 HCP-FDA、HCP-DTM和商用树脂HA在人血浆环境中对PTH和β2-MG(a)、IL-6和TNF-α(b)毒素的吸附率
Fig.7 Adsorption rate of HCP-FDA, HCP-DTM and commercial HA resin for PTH and β2-MG(a), IL-6 and TNF-α(b) in the human plasma with the treatment time of 2 h
[1] | Rahnama Haratbar P, Nasiri M, Ghaemi A. Hypercrosslinked polystyrene-based adsorbents for the removal of lead ions from aqueous effluents: experimental and RSM modeling[J]. Iranian Polymer Journal, 2023, 32(7): 929-946. |
[2] | Huang J, Turner S R. Hypercrosslinked polymers: a review[J]. Polymer Reviews, 2018, 58(1): 1-41. |
[3] | Masoumi H, Ghaemi A, Ghanadzadeh Gilani H. Experimental and RSM study of hypercrosslinked polystyrene in elimination of lead, cadmium and nickel ions in single and multi-component systems[J]. Chemical Engineering Research and Design, 2022, 182: 410-427. |
[4] | Liao Q, Kim E J, Tang Y X, et al. Rational design of hyper-crosslinked polymers for biomedical applications[J]. Journal of Polymer Science, 2024, 62(8): 1517-1535. |
[5] | Liu Q Q, Xia B J, Huang J, et al. Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage[J]. Materials Chemistry and Physics, 2017, 199: 616-622. |
[6] | Liu Y H, Peng X Y. Multi-functional hypercrosslinked polystyrene as high-performance adsorbents for artificial liver blood purification[J]. Frontiers in Chemistry, 2022, 9: 789814. |
[7] | 潘鹏飞, 宋云林, 李文哲, 等. 血液吸附技术在脓毒症中的应用进展[J]. 重庆医学, 2019, 48(14): 2451-2454. |
Pan P F, Song Y L, Li W Z, et al. Application of blood adsorption technologies in sepsis[J]. Chongqing Medicine, 2019, 48(14): 2451-2454. | |
[8] | Magomedov M A, Kim T G, Masolitin S V, et al. Use of sorbent based on hypercrosslinked styrene-divinylbenzene copolymer with immobilized LPS-selective ligand in hemoperfusion for treatment of patients with septic shock[J]. General Reanimatology, 2021, 16(6): 31-53. |
[9] | Davankov V A, Tsyurupa M P. Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks[J]. Reactive Polymers, 1990, 13(1): 27-42. |
[10] | Kirillov A S, Gorshkov N I, Shevchenko N N, et al. Tuning the porosity of hypercrosslinked styrene-divinylbenzene copolymers for efficient adsorption of rifampicin from aqueous media[J]. Journal of Polymer Research, 2023, 30(11): 405. |
[11] | Peng X Q, Yang P P, Dai K, et al. Synthesis, adsorption and molecular simulation study of methylamine-modified hyper-cross-linked resins for efficient removal of citric acid from aqueous solution[J]. Scientific Reports, 2020, 10(1): 9623. |
[12] | Ghanooni S, Karimi B, Nikfarjam N. Preparation of a dual-functionalized acid-base macroporous polymer via high internal phase emulsion templating as a reusable catalyst for one-pot deacetalization-henry reaction[J]. ACS Omega, 2022, 7(35): 30989-31002. |
[13] | He Y H, Tao J J, Zhang X, et al. Facile synthesis of magnetic hyper-crosslinked porous polymer for efficient extraction and sensitive determination of nitroimidazole antibiotics[J]. Microchemical Journal, 2024, 200: 110285. |
[14] | Zhou C C, Yan J, Cao Z N. Postcrosslinking of macroporous styrene-divinylbenzene copolymers via pendant vinyl groups: effect of the starting copolymers on the pore structure of the postcrosslinked products[J]. Journal of Applied Polymer Science, 2002, 83(8): 1668-1677. |
[15] | Ghafari M, Atkinson J D. One-step hyper-cross-linking of porous styrenic polymers using dichloroalkane cross-linkers to maintain hydrophobicity[J]. Polymer, 2017, 116: 278-286. |
[16] | Fu Z Y, Jia J Z, Li J, et al. Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation[J]. Chemical Engineering Journal, 2017, 323: 557-564. |
[17] | Castaldo R, Gentile G, Avella M, et al. Microporous hyper-crosslinked polystyrenes and nanocomposites with high adsorption properties: a review[J]. Polymers, 2017, 9(12): 651. |
[18] | Dawson R, Stöckel E, Holst J R, et al. Microporous organic polymers for carbon dioxide capture[J]. Energy & Environmental Science, 2011, 4(10): 4239-4245. |
[19] | Kewley A, Stephenson A, Chen L J, et al. Porous organic cages for gas chromatography separations[J]. Chemistry of Materials, 2015, 27(9): 3207-3210. |
[20] | Slater A G, Cooper A I. Function-led design of new porous materials[J]. Science, 2015, 348(6238): eaaa8075. |
[21] | Tan L X, Tan B E. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356. |
[22] | Liao G F, Zhong L, Cheung C S, et al. Direct synthesis of hypercrosslinked microporous poly(para-methoxystyrene) for removal of iron(Ⅲ) ion from aqueous solution[J]. Microporous and Mesoporous Materials, 2020, 307: 110469. |
[23] | Li C, Che W, Liu S Y, et al. Hypercrosslinked microporous polystyrene: from synthesis to properties to applications[J]. Materials Today Chemistry, 2023, 29: 101392. |
[24] | 刘云鸿, 彭新艳. 新型蛋白结合类毒素血液灌流吸附剂的制备及吸附性能[J]. 高等学校化学学报, 2021, 42(6): 1952-1964. |
Liu Y H, Peng X Y. Preparation and property of a novel hemoperfusion adsorbent for protein-bound uremic toxins[J]. Chemical Journal of Chinese Universities, 2021, 42(6): 1952-1964. | |
[25] | Liu Y H, Peng X Y, Hu Z D, et al. Fabrication of a novel nitrogen-containing porous carbon adsorbent for protein-bound uremic toxins removal[J]. Materials Science & Engineering. C, Materials for Biological Applications, 2021, 121: 111879. |
[26] | Li B Y, Gong R N, Wang W, et al. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules, 2011, 44(8): 2410-2414. |
[27] | 李发达, 徐媛媛, 于均超, 等. 超高交联树脂的氯代烷烃后交联法制备及对咖啡因的吸附研究[J]. 离子交换与吸附, 2022, 38(1): 48-59. |
Li F D, Xu Y Y, Yu J C, et al. Preparation of hypercrosslinked polystyrene via post-crosslinking by chloroalkanes and adsorption of caffeine[J]. Ion Exchange and Adsorption, 2022, 38(1): 48-59. | |
[28] | 李发达. 超交联和极性修饰聚苯乙烯的制备及其对有机污染物的吸附研究[D]. 长沙: 湖南师范大学, 2021. |
Li F D. Study on preparation of hypercrosslinked and polar modified polystyrene and its adsorption of organic pollutants[D]. Changsha: Hunan Normal University, 2021. | |
[29] | Law R V, Sherrington D C, Snape C E, et al. Solid-state 13C MAS NMR studies of hyper-cross-linked polystyrene resins[J]. Macromolecules, 1996, 29(19): 6284-6293. |
[30] | Malik D J, Webb C, Holdich R G, et al. Synthesis and characterization of size-selective nanoporous polymeric adsorbents for blood purification[J]. Separation and Purification Technology, 2009, 66(3): 578-585. |
[1] | 王晓琨, 廖泽林, 武俊良, 陈星宇, 于奕菲, 贺高红, 张秀娟. 提升血液相容性及促进CO2传递的LDH-PTFPMS/PEI复合膜制备及性能评价[J]. 化工学报, 2025, 76(4): 1800-1808. |
[2] | 李庆斯, 张雷. 血液灌流吸附剂材料的研究进展[J]. 化工学报, 2020, 71(S2): 12-23. |
[3] | 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281. |
[4] | 王鹏, 刘京雷, 张胜中, 范得权, 张英, 徐宏. 结构化5A分子筛吸附床结构及工艺参数对N2/H2吸附性能的影响[J]. 化工学报, 2020, 71(7): 3114-3122. |
[5] | 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787. |
[6] | 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370. |
[7] | 许嘉兴, 李廷贤, 王如竹. 氯化镁/沸石复合材料的吸附特性及储热性能[J]. 化工学报, 2016, 67(S2): 348-355. |
[8] | 李阳, 朱玉雯, 高继慧, 孙飞, 雷鸣. 活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报, 2015, 66(3): 1126-1132. |
[9] | 杨娜, 王睿. 固载氨基化离子液体的制备及其对CO2的吸附性能[J]. 化工学报, 2013, 64(S1): 128-132. |
[10] | 李栋, 汪印, 杨娟, 姚常斌, 苏宏, 许光文. 生物质和煤基活性炭制备过程的活化特性比较[J]. 化工学报, 2013, 64(9): 3338-3347. |
[11] | 树童, 卢平, 何楠, 王秦超. 改性桑树枝焦对模拟烟气中汞的吸附性能[J]. 化工学报, 2013, 64(4): 1415-1423. |
[12] | 万鹏, 张华, 于畅, 邱介山. 壳聚糖基大孔炭质整体材料的制备及其对痕量二氧化硫的吸附性能[J]. 化工学报, 2013, 64(1): 357-364. |
[13] | 马春艳, 林东强, 姚善泾. 碳酸钙致孔的β-环糊精复合介质的制备及其对芦丁的吸附性能[J]. 化工学报, 2012, 63(1): 133-138. |
[14] | 金 秋1,2,原思国1,安万凯2. 含氧超高交联树脂的合成及其对苯酚的吸附性能[J]. 化工进展, 2012, 31(03): 593-597. |
[15] | 方玉堂, 郭敬花, 李大艳, 高学农. 稀土改性分子筛的表征与性能[J]. 化工学报, 2011, 62(6): 1581-1586. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||