| [1] |
刘臻, 次东辉, 方薪晖, 等. 基于含碳废弃物与煤共气化的碳循环概念及碳减排潜力分析[J]. 洁净煤技术, 2022, 28(2): 130-136.
|
|
Liu Z, Ci D H, Fang X H, et al. Concept of carbon cycle based on co-gasification of carbon containing waste and coal and analysis of carbon emission reduction potential[J]. Clean Coal Technology, 2022, 28(2): 130-136.
|
| [2] |
周守毅. 钢铁企业副产煤气中硫化物的测定[J]. 环境科学与技术, 2017, 40(S1): 252-254.
|
|
Zhou S Y. Determiningsulfur compound in by-product gas of iron and steel enterprises[J]. Environmental Science & Technology, 2017, 40(S1): 252-254.
|
| [3] |
Cao R, Ning P, Wang X Q, et al. Low-temperature hydrolysis of carbonyl sulfide in blast furnace gas using Al2O3-based catalysts with high oxidation resistance[J]. Fuel, 2022, 310: 122295.
|
| [4] |
Yang D D, Chen G M, Fu J M, et al. The mitigation performance of ventilation on the accident consequences of H2S-containing natural gas release[J]. Process Safety and Environmental Protection, 2021, 148: 1327-1336.
|
| [5] |
范健, 雷军. COS脱除技术进展[J]. 安徽化工, 2007, 33(4): 3-5.
|
|
Fan J, Lei J. Technique development of COS removal[J]. Anhui Chemical Industry, 2007, 33(4): 3-5.
|
| [6] |
王明飞, 陈鹏, 陶雷, 等. 有机硫水解催化剂研究进展[J]. 材料导报, 2022, 36(17): 40-48.
|
|
Wang M F, Chen P, Tao L, et al. Research progress of organic sulfur hydrolysis catalyst[J]. Materials Reports, 2022, 36(17): 40-48.
|
| [7] |
孙万堂. 助剂改性钴钼加氢脱硫催化剂制备过程研究[D]. 青岛: 青岛科技大学, 2016.
|
|
Sun W T. Additives modification process research of CoMo/ γ - A l 2 O 3 hydrodesulfurization catalyst[D]. Qingdao: Qingdao University of Science and Technology, 2016.
|
| [8] |
杨晨, 赖君玲, 罗根祥. 羰基硫水解催化剂研究进展[J]. 当代化工, 2015, 44(10): 2352-2354.
|
|
Yang C, Lai J L, Luo G X. Research progress of carbonyl sulfide hydrolysis catalysts[J]. Contemporary Chemical Industry, 2015, 44(10): 2352-2354.
|
| [9] |
王冠, 孙同华, 张宏波, 等. 催化水解法低温脱除煤气中羰基硫的研究[J]. 现代化工, 2014, 34(1): 60-63.
|
|
Wang G, Sun T H, Zhang H B, et al. Carbonyl sulfide gas removal by catalytic hydrolysis in low temperature[J]. Modern Chemical Industry, 2014 34(1): 60-63.
|
| [10] |
李春虎, 郭汉贤, 谈世韶. 碱改性γ-Al2O3催化剂表面碱强度分布与COS水解活性的研究[J]. 分子催化, 1994, 8(4): 305-312.
|
|
Li C H, Guo H X, Tan S S. Study on the alkalized γ-Al2O3 catalyst for its base strength distribution and catalytic activity[J]. Journal of Molecular Catalysis(China), 1994, 8(4): 305-312.
|
| [11] |
Rhodes C, Riddel S A, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review[J]. Catalysis Today, 2000, 59(3/4): 443-464.
|
| [12] |
Li H F, Su S, Peng Y, et al. Effect of La-modified supporter on H2S removal performance of Mn/La/Al2O3 sorbent in a reducing atmosphere[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8260-8270.
|
| [13] |
Zhang Y Q, Xiao Z B, Ma J X. Hydrolysis of carbonyl sulfide over rare earth oxysulfides[J]. Applied Catalysis B: Environmental, 2004, 48(1): 57-63.
|
| [14] |
Gao P T, Li Y R, Lin Y T, et al. Promoting effect of Fe/La loading on γ-Al2O3 catalyst for hydrolysis of carbonyl sulfur[J]. Environmental Science and Pollution Research, 2022, 29(56): 84166-84179.
|
| [15] |
曹强, 李玉然, 王斌, 等. γ-Al2O3基COS水解催化剂在含HCl气氛的失活机理[J]. 环境工程, 2023, 41(12): 182-189.
|
|
Cao Q, Li Y R, Wang B, et al. Deactivation mechanism of γ-Al2O3 based catalysts for the catalytic hydrolysis of carbonyl sulfide in presence of HCl[J]. Environmental Engineering, 2023, 41(12): 182-189.
|
| [16] |
高志华, 阴丽华, 李春虎, 等. 纳米α-FeOOH催化剂一段法脱除COS和H2S性能的研究[J]. 燃料化学学报, 2003, 31(3): 249-253.
|
|
Gao Z H, Yin L H, Li C H, et al. Study on simultaneous removal of COS and H2S by using α-FeOOH nanoparticle[J]. Journal of Fuel Chemistry and Technology, 2003, 31(3): 249-253.
|
| [17] |
Tong S, Dalla Lana I G, Chuang K T. Kinetic modelling of the hydrolysis of carbonyl sulfide catalyzed by either titania or alumina[J]. The Canadian Journal of Chemical Engineering, 1993, 71(3): 392-400.
|
| [18] |
谈世韶, 王辉, 李春虎, 等. 高浓度二氧化碳气体中羰基硫的水解脱除[J]. 化肥工业, 1991, 18(2): 26-29, 53.
|
|
Tan S S, Wang H, Li C H, et al. Hydrolytic of carbonyl sulfide in high concentration carbon dioxide gas[J]. Journal of Chemical Fertilizer Industry, 1991, 18(2): 26-29, 53.
|
| [19] |
王国兴, 黄新伟, 叶敬东, 等. T504型常温COS水解催化剂的研制[J]. 湖北化工, 1995, 12(1): 24-28.
|
|
Wang G X, Huang X W, Ye J D, et al. Development of T504 type catalyst for hydrolysis of COS at room temperature[J]. Hubei Chemical Industry, 1995, 12(1): 24-28.
|
| [20] |
张青林, 郭汉贤. γ-Al2O3催化剂上羰基硫的水解动力学[J]. 催化学报, 1988, 9(1): 14-24.
|
|
Zhang Q L, Guo H X. Kinetics of the hydrolysis of carbonyl sulfide over γ-Al2O3 catalysts at lower temperature[J]. Chinese Journal of Catalysis, 1988, 9(1): 14-24.
|
| [21] |
Lei G C, Zheng Y, Cao Y N, et al. Deactivation mechanism of COS hydrolysis over potassium modified alumina[J]. Acta Physico Chimica Sinica, 2023, 39(9): 2210038.
|
| [22] |
Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
|
| [23] |
Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie International Edition, 2005, 44(43): 7053-7059.
|
| [24] |
Pan F, Lu X C, Wang T Z, et al. Synthesis of large-mesoporous γ-Al2O3 from coal-series kaolin at room temperature[J]. Materials Letters, 2013, 91: 136-138.
|
| [25] |
Taherian Z, Shahed Gharahshiran V, Khataee A, et al. Anti-coking freeze-dried NiMgAl catalysts for dry and steam reforming of methane[J]. Journal of Industrial and Engineering Chemistry, 2021, 103: 187-194.
|
| [26] |
Zhang M, Zhang J F, Zhou Z L, et al. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst[J]. Applied Catalysis B: Environmental, 2020, 264: 118522.
|
| [27] |
魏征, 张鑫, 张凤莲, 等. 镁铝水滑石衍生复合氧化物的COS水解性能[J]. 环境科学, 2019, 40(10): 4423-4430.
|
|
Wei Z, Zhang X, Zhang F L, et al. Hydrolysis of COS over MgAl mixed oxides derived from hydrotalcites[J]. Environmental Science, 2019, 40(10): 4423-4430.
|
| [28] |
Yang S Q, He J P, Zhang N, et al. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 179-188.
|
| [29] |
Wang J W, Xie H, Shu D B, et al. The promotion of NH3-SCR performance and its mechanism on Sm modified birnessite[J]. Fuel, 2024, 356: 129604.
|
| [30] |
Dong X S, Li F, Zhao N, et al. A study on the order of calcination and liquid reduction over Cu-based catalyst for synthesis of methanol from CO2/H2 [J]. Catalysis Letters, 2017, 147: 1235-1242.
|
| [31] |
Zhao S Z, Yi H H, Tang X L, et al. The hydrolysis of carbonyl sulfide at low temperature: a review[J]. The Scientific World Journal, 2013(1): 739501.
|
| [32] |
蒋慧敏. 分子筛吸附脱除焦炉煤气中羰基硫和硫化氢性能及机理研究[D]. 太原: 太原理工大学, 2021.
|
|
Jiang H M. Study on performance and mechanism of adsorption and removal of carbonyl sulfur and hydrogen sulfide from coke oven gas by molecular sieve[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
| [33] |
臧丽莉. Al2O3表面吸附小分子的第一性原理研究[D]. 福州: 福州大学, 2011.
|
|
Zang L L. First-principles study on adsorption of small molecules on Al2O3 surface[D]. Fuzhou: Fuzhou University, 2011.
|
| [34] |
Chupas P J, Chapman K W, Halder G J. Elucidating the structure of surface acid sites on γ-Al2O3 [J]. Journal of the American Chemical Society, 2011, 133(22): 8522-8524.
|
| [35] |
Zhang X, Qiu X Y, Wang R. Enabling catalysts for carbonyl sulfide hydrolysis[J]. Catalysts, 2024, 14(12): 952.
|
| [36] |
Cao Q, Lin Y T, Li Y R, et al. Hydrolysis of carbonyl sulfide in blast furnace gas using alkali metal-modified γ-Al2O3 catalysts with high sulfur resistance[J]. ACS Omega, 2023, 8(39): 35608-35618.
|
| [37] |
Zi S Y, Li K, Wang X Q, et al. Influence of surface basic sites and oxygen vacancies on the performance of metal-modified rod-like ceria catalysts for low-temperature hydrolysis of carbonyl sulfide[J]. Chemistry—An Asian Journal, 2024, 19(21): e202400235.
|