化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6268-6276.DOI: 10.11949/0438-1157.20250647
收稿日期:2025-06-16
修回日期:2025-07-30
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
郑雅元,邢波,杜怀明
作者简介:吕豪(1998—),男,硕士研究生,17683133102@163.com
基金资助:
Hao LYU(
), Wenhao MAI, Yayuan ZHENG(
), Bo XING(
), Huaiming DU(
)
Received:2025-06-16
Revised:2025-07-30
Online:2025-12-31
Published:2026-01-23
Contact:
Yayuan ZHENG, Bo XING, Huaiming DU
摘要:
对磷酸二氢铵(MAP)在水-乙二醇体系中的结晶动力学进行了实验探讨,利用经典成核理论研究了MAP结晶的成核机理,测定了在不同温度以及不同过饱和比条件下MAP的成核诱导时间,研究了温度及过饱和比对临界成核自由能(ΔG* )、晶体界面自由能(γ)、临界成核分子数(i* )、临界成核半径(r* )的影响规律,根据成核参数揭示其生长机理;此外,探讨了搅拌速率(NP)、过饱和比(S)等因素对结晶过程的影响;在动力学数据的基础上,用最小二乘法拟合了MAP的成核及生长动力学方程,使用Canning-Randolph(C-R)及Abegg-Stevens-Larson(ASL)模型拟合线性相关生长动力学模型,揭示了溶剂组成对结晶动力学的协同调控机制。结果表明:温度和过饱和比增大时,i* 、r* 、ΔG* 与诱导时间均减小,而初级成核速率增大;过饱和比在1.08及以上时均相成核成为主导机制,在1.06及以下时非均相成核为主要成核方式;表面熵因子值均小于1,该晶体的结晶机制为连续生长机制;在评估不同线性相关生长模型时发现ASL模型在描述晶体生长行为方面具有更高的准确性,从动力学模型阶数可以看出,过饱和比对成核生长速率的影响最大。本研究阐明了水-乙二醇体系中MAP结晶的响应规律,可为基于混合溶剂设计的晶体尺寸控制与工业化结晶工艺优化提供理论依据。
中图分类号:
吕豪, 麦文浩, 郑雅元, 邢波, 杜怀明. 磷酸二氢铵在水-乙二醇体系中的结晶动力学[J]. 化工学报, 2025, 76(12): 6268-6276.
Hao LYU, Wenhao MAI, Yayuan ZHENG, Bo XING, Huaiming DU. Crystallization kinetics of ammonium dihydrogen phosphate in water-ethylene glycol systems[J]. CIESC Journal, 2025, 76(12): 6268-6276.
| T/K | MAP溶解度[ (EG∶H2O=2∶8) | 搅拌速率/(r/min) | 溶剂剂量/ml |
|---|---|---|---|
| 313.2 | 2.328 | 200~400 | 诱导期实验:200 动力学实验:400 |
| 318.2 | 2.820 | ||
| 323.2 | 3.428 | ||
| 328.2 | 4.036 | ||
| 333.2 | 4.440 |
表1 MAP在二元体系中的溶解度及实验参数
Table 1 Solubilities of MAP in binary systems and experimental parameters
| T/K | MAP溶解度[ (EG∶H2O=2∶8) | 搅拌速率/(r/min) | 溶剂剂量/ml |
|---|---|---|---|
| 313.2 | 2.328 | 200~400 | 诱导期实验:200 动力学实验:400 |
| 318.2 | 2.820 | ||
| 323.2 | 3.428 | ||
| 328.2 | 4.036 | ||
| 333.2 | 4.440 |
| T/K | ΔG* ×1021/J | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 104.303 | 26.5896 | 12.0467 | 6.9056 | 4.5026 | 3.1847 | 2.3824 | |
| 318.2 | 102.944 | 26.2431 | 11.8898 | 6.8156 | 4.4439 | 3.1432 | 2.3513 | |
| 323.2 | 101.717 | 25.9304 | 11.7481 | 6.7344 | 4.391 | 3.1057 | 2.3233 | |
| 328.2 | 92.1996 | 23.5041 | 10.6488 | 6.1043 | 3.9801 | 2.8151 | 2.1059 | |
| 333.2 | 65.8046 | 16.7753 | 7.6003 | 4.3567 | 2.8407 | 2.0092 | 1.503 | |
表2 温度、过饱和比与临界成核自由能的关系
Table 2 The relationship between temperature, supersaturation ratio, and critical nucleation free energy
| T/K | ΔG* ×1021/J | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 104.303 | 26.5896 | 12.0467 | 6.9056 | 4.5026 | 3.1847 | 2.3824 | |
| 318.2 | 102.944 | 26.2431 | 11.8898 | 6.8156 | 4.4439 | 3.1432 | 2.3513 | |
| 323.2 | 101.717 | 25.9304 | 11.7481 | 6.7344 | 4.391 | 3.1057 | 2.3233 | |
| 328.2 | 92.1996 | 23.5041 | 10.6488 | 6.1043 | 3.9801 | 2.8151 | 2.1059 | |
| 333.2 | 65.8046 | 16.7753 | 7.6003 | 4.3567 | 2.8407 | 2.0092 | 1.503 | |
| T/K | i* | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2437.66 | 313.76 | 95.68 | 41.53 | 21.86 | 13.01 | 8.41 | |
| 318.2 | 2368.08 | 304.8 | 92.95 | 40.34 | 21.24 | 12.63 | 8.17 | |
| 323.2 | 2303.66 | 296.51 | 90.42 | 39.24 | 20.66 | 12.29 | 7.95 | |
| 328.2 | 2056.29 | 264.67 | 80.71 | 35.03 | 18.44 | 10.97 | 7.1 | |
| 333.2 | 1445.59 | 186.07 | 56.74 | 24.63 | 12.97 | 7.71 | 4.99 | |
表3 温度、过饱和比与临界成核分子数的关系
Table 3 The relationship between temperature, supersaturation ratio, and critical nucleus size
| T/K | i* | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2437.66 | 313.76 | 95.68 | 41.53 | 21.86 | 13.01 | 8.41 | |
| 318.2 | 2368.08 | 304.8 | 92.95 | 40.34 | 21.24 | 12.63 | 8.17 | |
| 323.2 | 2303.66 | 296.51 | 90.42 | 39.24 | 20.66 | 12.29 | 7.95 | |
| 328.2 | 2056.29 | 264.67 | 80.71 | 35.03 | 18.44 | 10.97 | 7.1 | |
| 333.2 | 1445.59 | 186.07 | 56.74 | 24.63 | 12.97 | 7.71 | 4.99 | |
| T/K | r*/Å | ||||||
|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | |
| 313.2 | 45.49 | 22.97 | 15.46 | 11.7 | 9.45 | 7.95 | 6.88 |
| 318.2 | 44.8 | 22.62 | 15.23 | 11.53 | 9.31 | 7.83 | 6.77 |
| 323.2 | 44.2 | 22.32 | 15.02 | 11.37 | 9.18 | 7.72 | 6.68 |
| 328.2 | 42.45 | 21.43 | 14.43 | 10.92 | 8.82 | 7.42 | 6.42 |
| 333.2 | 37.68 | 19.02 | 12.8 | 9.69 | 7.83 | 6.58 | 5.69 |
表4 温度、过饱和比与临界成核自由能的关系
Table 4 The relationship between temperature, supersaturation ratio, and critical nucleation free energy
| T/K | r*/Å | ||||||
|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | |
| 313.2 | 45.49 | 22.97 | 15.46 | 11.7 | 9.45 | 7.95 | 6.88 |
| 318.2 | 44.8 | 22.62 | 15.23 | 11.53 | 9.31 | 7.83 | 6.77 |
| 323.2 | 44.2 | 22.32 | 15.02 | 11.37 | 9.18 | 7.72 | 6.68 |
| 328.2 | 42.45 | 21.43 | 14.43 | 10.92 | 8.82 | 7.42 | 6.42 |
| 333.2 | 37.68 | 19.02 | 12.8 | 9.69 | 7.83 | 6.58 | 5.69 |
| T/K | J×10-27/(nuclei/(s·m3)) | ||||||
|---|---|---|---|---|---|---|---|
| 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2.1273 | 61.566 | 202.3061 | 352.7781 | 478.5765 | 576.2051 | |
| 318.2 | 2.5357 | 66.6645 | 211.7466 | 363.4264 | 488.7491 | 585.3431 | |
| 323.2 | 2.9834 | 71.761 | 220.8801 | 373.5723 | 498.3608 | 593.9334 | |
| 328.2 | 5.5704 | 95.224 | 259.7662 | 415.2352 | 537.0595 | 628.1081 | |
| 333.2 | 26.0219 | 191.448 | 387.6566 | 539.0858 | 645.9572 | 721.1351 | |
表5 均相成核过程中过饱和比与成核速率的关系
Table 5 Relationship between supersaturation ratio and nucleation rate in homogeneous nucleation
| T/K | J×10-27/(nuclei/(s·m3)) | ||||||
|---|---|---|---|---|---|---|---|
| 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2.1273 | 61.566 | 202.3061 | 352.7781 | 478.5765 | 576.2051 | |
| 318.2 | 2.5357 | 66.6645 | 211.7466 | 363.4264 | 488.7491 | 585.3431 | |
| 323.2 | 2.9834 | 71.761 | 220.8801 | 373.5723 | 498.3608 | 593.9334 | |
| 328.2 | 5.5704 | 95.224 | 259.7662 | 415.2352 | 537.0595 | 628.1081 | |
| 333.2 | 26.0219 | 191.448 | 387.6566 | 539.0858 | 645.9572 | 721.1351 | |
| T/K | b | R2 | γ/(J/m2) | f |
|---|---|---|---|---|
| 313.2 | 0.00946 | 0.95675 | 1.2033×10-3 | 0.3307 |
| 318.2 | 0.00919 | 0.97348 | 1.2243×10-3 | 0.3275 |
| 323.2 | 0.00894 | 0.91457 | 1.2427×10-3 | 0.3245 |
| 328.2 | 0.00798 | 0.95457 | 1.2216×10-3 | 0.3124 |
| 333.2 | 0.00561 | 0.92757 | 1.1067×10-3 | 0.2778 |
表6 成核参数
Table 6 Nucleation parameters
| T/K | b | R2 | γ/(J/m2) | f |
|---|---|---|---|---|
| 313.2 | 0.00946 | 0.95675 | 1.2033×10-3 | 0.3307 |
| 318.2 | 0.00919 | 0.97348 | 1.2243×10-3 | 0.3275 |
| 323.2 | 0.00894 | 0.91457 | 1.2427×10-3 | 0.3245 |
| 328.2 | 0.00798 | 0.95457 | 1.2216×10-3 | 0.3124 |
| 333.2 | 0.00561 | 0.92757 | 1.1067×10-3 | 0.2778 |
| [1] | 党亚固, 林晶, 费德君, 等. 磷酸二氢铵结晶影响因素研究[J]. 化学工程, 2010, 38(2): 18-21. |
| Dang Y G, Lin J, Fei D J, et al. Effect factors of monoammonium phosphate crystallization process[J]. Chemical Engineering, 2010, 38(2): 18-21. | |
| [2] | 陈铭, 娄伦武, 卓知杰, 等. 湿法磷酸净化生产工业级磷酸一铵的工艺技术现状[J]. 化肥工业, 2019, 46(1): 5-7, 38. |
| Chen M, Lou L W, Zhuo Z J, et al. Current status of process technology for production of industrial grade monoammonium phosphate by wet phosphoric acid purification[J]. Chemical Fertilizer Industry, 2019, 46(1): 5-7, 38. | |
| [3] | 程岳山, 张翠娟. 乙醇/水二元混合物结构性质的分子动力学模拟[J]. 泰山医学院学报, 2007, 28(4): 263-266. |
| Cheng Y S, Zhang C J. Molecular dynamics simulation of ethanol/water mixture for structure properties[J]. Journal of Taishan Medical College, 2007, 28(4): 263-266. | |
| [4] | 范诗梦. 高氯酸钠结晶过程研究[D]. 南昌: 南昌大学, 2024. |
| Fan S M. Study on the crystallization process of sodium perchlorate[D]. Nanchang: Nanchang University, 2024. | |
| [5] | Hao L, Mai W H, Zheng Y Y, et al. Study on the crystallization thermodynamics of ammonium dihydrogen phosphate in H2O-ethylene glycol binary system[J]. Russian Journal of Physical Chemistry A, 2025, 99(7): 1487-1493. |
| [6] | 王灿灿, 郑丹, 胡晓敏, 等. 流化床结晶器中耦合破碎机理的氯化钠晶体成核动力学研究[J]. 山西化工, 2021, 41(1): 13-17. |
| Wang C C, Zheng D, Hu X M, et al. Study on the nucleation kinetics of sodium chloride crystal in fluidized bed crystallizer[J]. Shanxi Chemical Industry, 2021, 41(1): 13-17. | |
| [7] | Akusevich A, Pecušová B, Prnová A, et al. Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(19): 10999-11012. |
| [8] | Fang L H, Fang S D, Zhang S W, et al. Non-isothermal crystallization kinetics of polyvinylidene fluoride (PVDF)/microcrystalline graphite (MCG) composites[J]. Journal of Macromolecular Science, Part B, 2022, 61(9): 1008-1023. |
| [9] | Liu S F, Sun Q, Asselin E, et al. Crystallization kinetics of large-sized columnar α-hemihydrate gypsum by reaction of waste CaCl2 and Al2(SO4)3 without crystal modifiers[J]. Journal of Crystal Growth, 2022, 596: 126817. |
| [10] | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517. |
| Gong J B, Sun J, Wang J K. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517. | |
| [11] | Liu S N, Ge J C, Ying H, et al. In situ scattering studies of crystallization kinetics in a phase-separated Zr-Cu-Fe-Al bulk metallic glass[J]. Acta Metallurgica Sinica, 2022, 35(1): 103-114. |
| [12] | Jain N, Jagtap P, Bower A, et al. Separating nucleation from growth kinetics of Sn whiskers using thermal pretreatment followed by mechanical loading[J]. Journal of Electronic Materials, 2025, 54(4): 2618-2627. |
| [13] | 刘乾. FOX-7冷却结晶机理及晶体形貌调控技术研究[D]. 太原: 中北大学, 2021. |
| Liu Q. Study on cooling crystallization mechanism and crystal morphology control technology of FOX-7[D]. Taiyuan: North University of China, 2021. | |
| [14] | Zheng D, Xu M L, Wang J, et al. Nonisothermal crystallization kinetics of potassium chloride produced by stirred crystallization[J]. Journal of Crystal Growth, 2023, 603: 127035. |
| [15] | Cao S T, Zhang Y F, Zhang Y. Nucleation and morphology of monosodium aluminate hydrate from concentrated sodium aluminate solutions[J]. Crystal Growth & Design, 2010, 10(4): 1605-1610. |
| [16] | Kuldipkumar A, Kwon G S, Zhang G G Z. Determining the growth mechanism of tolazamide by induction time measurement[J]. Crystal Growth & Design, 2007, 7(2): 234-242. |
| [17] | Nagy Z K, Fujiwara M, Woo X Y, et al. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1245-1252. |
| [18] | Liu X J, Xu D, Ren M J, et al. An examination of the growth kinetics of L-arginine trifluoroacetate (LATF) crystals from induction period and atomic force microscopy investigations[J]. Crystal Growth & Design, 2010, 10(8): 3442-3447. |
| [19] | Yu J, Li A, Chen X C, et al. Experimental determination of metastable zone width, induction period, and primary nucleation kinetics of cytidine 5′-monophosphate disodium salt in an ethanol-aqueous mixture[J]. Journal of Chemical & Engineering Data, 2013, 58(5): 1244-1248. |
| [20] | 郭盛争. 甜菊糖冷却结晶过程研究[D]. 天津: 天津大学, 2020. |
| Guo S Z. Study on cooling crystallization process of stevioside[D]. Tianjin: Tianjin University, 2020. | |
| [21] | 齐莹莹. 磷酸一铵结晶热力学、动力学及工艺优化[D]. 天津: 天津大学, 2016. |
| Qi Y Y. Thermodynamics, kinetics and process optimization of monoammonium phosphate crystallization[D]. Tianjin: Tianjin University, 2016. | |
| [22] | Lewis A, Mazlan N A, Butt F S, et al. Aqueous co-solvent synthesis of zeolitic imidazolateframeworks: the impact of co-solvents in the crystal growth kinetics[J]. Materials Today Chemistry, 2024, 40: 102256. |
| [23] | 汤毅慧, 赵启文, 陈得清. 氯化钾在钾石盐溶液中的结晶动力学研究[J]. 青海大学学报, 2020, 38(5): 46-51. |
| Tang Y H, Zhao Q W, Chen D Q. Study on crystallization kinetics of potassium chloride in sylvite solution[J]. Journal of Qinghai University, 2020, 38(5): 46-51. | |
| [24] | 樊思琪. FOX-7的晶体形态学与结晶动力学研究[D]. 绵阳: 西南科技大学, 2021. |
| Fan S Q. Study on crystal morphology and crystallization kinetics of FOX-7[D]. Mianyang: Southwest University of Science and Technology, 2021. | |
| [25] | Abd-el Salam M N, Shaaban E R, Benabdallah F, et al. Experimental and theoretical studies of glass and crystallization kinetics of semiconducting As40Se40Ag20 chalcogenide glass[J]. Physica B: Condensed Matter, 2021, 608: 412745. |
| [26] | 洪振取. 工业结晶过程粒数衡算模型求解及其优化[D]. 青岛: 青岛科技大学, 2024. |
| Hong Z Q. Solution and optimization of particle number balance model in industrial crystallization process[D]. Qingdao: Qingdao University of Science & Technology, 2024. | |
| [27] | Zheng D, Wang J, Shen Y Q, et al. Size-dependent growth kinetics model for potassium chloride from seeded chloride solution[J]. International Journal of Chemical Reactor Engineering, 2023, 21(7): 801-813. |
| [28] | Liendo F, Arduino M, Deorsola F A, et al. Nucleation and growth kinetics of CaCO3 crystals in the presence of foreign monovalent ions[J]. Journal of Crystal Growth, 2022, 578: 126406. |
| [29] | Randolph A D, Larson M A. Transient and steady state size distributions in continuous mixed suspension crystallizers[J]. AIChE Journal, 1962, 8(5): 639-645. |
| [30] | Zheng Y Y, Shen Y Q, Ma Y L, et al. Nucleation, growth, and aggregation kinetics of KCl produced by stirred crystallization[J]. Applied Physics A, 2023, 129(9): 651. |
| [1] | 吴贵豪, 朱有健, 樊纪原, 成伟, 蒋好, 杨海平, 陈汉平. 磷酸二氢铵对玉米秆烘焙及固定床燃烧颗粒物排放特性的影响[J]. 化工学报, 2021, 72(6): 3359-3367. |
| [2] | 乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857. |
| [3] | 韩奎华, 齐建荟, 李辉, 路春美. 磷酸二氢铵脱除气相氯化钾的模拟与实验[J]. 化工学报, 2014, 65(3): 1093-1098. |
| [4] | 荣彦1,2,贺惠萍2,曹伟1,申长雨1,陈静波1. 基于两相模型的聚合物流动诱导结晶数值模拟[J]. 化工学报, 2012, 63(7): 2252-2257. |
| [5] | 石尧麒,辛忠. α/β复合成核剂对等规聚丙烯结晶形态的影响及非等温结晶动力学[J]. 化工学报, 2012, 63(4): 1274-1286. |
| [6] | 王锦燕, 陈静波, 刘春太, 申长雨. 聚合物流动诱导结晶数值模拟 [J]. 化工学报, 2011, 62(4): 1150-1156. |
| [7] | 李亚东,朱忠诚,张晓静,何领好,张忠厚. 热喷涂LDPE/n-SiO2复合涂层非等温结晶动力学 [J]. CIESC Journal, 2011, 62(3): 710-715. |
| [8] | 周健, 吴承旭, 王国军, 李磊, 杨润苗, 董观秀. 增韧改性聚对苯二甲酸丁二酯/聚碳酸酯共混物非等温结晶动力学与力学性能[J]. 化工学报, 2011, 62(12): 3588-3594. |
| [9] | 熊煦, 龚方红, 施海华, 陶国良, 刘春林, 郑晓林. LLDPE/SEBS-g-MAH体系的等温结晶动力学 [J]. 化工学报, 2010, 61(1): 249-254. |
| [10] | 周红军;尹国强;林轩;葛建芳. PP/PP-g-NH2/纳米SiO2复合材料的非等温结晶 [J]. CIESC Journal, 2009, 60(4): 1046-1052. |
| [11] | 陈亮, 肖剑, 谢在库, 于建国. 对二甲苯悬浮熔融结晶动力学 [J]. 化工学报, 2009, 60(11): 2787-2791. |
| [12] | 李亚东, 马亿珠, 强克刚, 曹少魁, 张治军. 火焰喷涂PA1010/nano-ZrO2复合涂层的非等温结晶动力学 [J]. 化工学报, 2007, 58(9): 2395-2402. |
| [13] | 张跃飞;辛忠 . 取代芳基杂环磷酸金属盐类成核剂在等规聚丙烯中的成核效应 [J]. CIESC Journal, 2006, 57(4): 953-958. |
| [14] | 李斌,曹贵平,刘颋,刘涛,赵玲,袁渭康,胡国华. 超临界二氧化碳渗透聚丙烯成核剂的初步研究 [J]. CIESC Journal, 2005, 13(5): 673-677. |
| [15] | 刘勇, 王静康, 尹秋响. 环丙沙星冷却结晶动力学测定 [J]. 化工学报, 2003, 54(6): 766-769. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号