化工学报

• •    

液氢储罐新型多节点热力学-热阻网络耦合模型的构建与验证研究

翟庆伟1(), 韩东旭2(), 田中辉3, 于阳4, 王鹏2, 陈宇杰2, 宇波5   

  1. 1.北京工业大学机械与能源工程学院,北京 100124
    2.北京石油化工学院机械工程学院,北京 102617
    3.国能氢创科技(北京)有限责任公司,北京 100007
    4.国家石油天然气管网集团有限公司油气调控中心,北京 100028
    5.长江大学石油工程学院,湖北 武汉 430100
  • 收稿日期:2025-09-01 修回日期:2025-12-16 出版日期:2025-12-19
  • 通讯作者: 韩东旭
  • 作者简介:翟庆伟(1993-),男,博士研究生,zhaiqingwei6@163.com
  • 基金资助:
    国家重点研发计划(2022YFE0210200);低温科学与技术全国重点实验室开放基金资助(T-2025cryo-3)

Construction and validation of a novel multi-node thermodynamic–thermal resistance network coupled model for liquid hydrogen storage tanks

Qingwei ZHAI1(), Dongxu HAN2(), Zhonghui TIAN3, Yang YU4, Peng WANG2, Yujie CHEN2, Bo YU5   

  1. 1.School of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    2.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    3.CHN Energy Hydrogen Innovation Technology Co. , Ltd. , Beijing 100007, China
    4.PipeChina Oil & Gas Pipeline Control Center, Beijing 100028, China
    5.School of Petroleum Engineering, Yangtze University, Wuhan 430100, Hubei, China
  • Received:2025-09-01 Revised:2025-12-16 Online:2025-12-19
  • Contact: Dongxu HAN

摘要:

液氢储罐的热管理直接关系到运行安全与能效,而其复杂热过程的预测依赖于高效准确的仿真模型。现有的计算流体力学(CFD)模型虽能细致刻画气-液相变与温度场分布,但计算代价过高,难以支撑大型储罐的工程应用;传统热力学方法虽然具有较高计算效率,却难以同时揭示罐内介质的温度梯度分布以及介质与多层绝热结构之间的动态热耦合。为此,构建了一种适用于液氢柱罐和球罐的新型多节点非平衡热力学-热阻网络耦合模型,可同时描述气-液相动态相变、温度梯度以及绝热层热通量及温度分布。基于该模型,结合美国国家航空航天局(NASA)多用途氢实验平台(MHTB)与液氢球罐实验(K-Site)进行了对比验证。模型在压力、气液相温度及绝热结构热通量预测上的最大相对误差均处于合理范围(压力 <5.2%,气相温度 <6.3%,液相温度 <0.61%,绝热结构 1.4%~12.4%),表明该模型能够稳定再现多工况下液氢储罐的自增压行为。该研究为液氢储罐的长期储存设计、运行优化与安全评估提供了有效仿真工具。

关键词: 液氢储罐, 自增压, 多节点非平衡热力学模型, 热阻网络, 绝热结构

Abstract:

Thermal management of liquid hydrogen (LH2) storage tanks is crucial for ensuring operational safety and energy efficiency, while accurate prediction of their complex thermal processes relies on accurate and efficient simulation models. Conventional computational fluid dynamics (CFD) approaches can capture phase change and temperature distribution evolution in detail, but their excessive computational cost limits their applicability to large-scale engineering systems. Classical thermodynamic methods, though computationally efficient, fail to resolve temperature gradients within the fluid and the dynamic thermal coupling between the medium and multilayer insulation. To address these limitations, a novel coupled multi-node non-equilibrium thermodynamic and thermal resistance network model is constructed for cylindrical and spherical LH₂ tanks. This model simultaneously accounts for transient gas–liquid phase change, temperature stratification, heat flux and temperature distribution across the insulation layers. Validation against experimental data from NASA's Multi-Purpose Hydrogen Test Bed (MHTB) and the spherical LH₂ tank test at K-Site demonstrates that the model achieves high predictive accuracy, with maximum relative errors below 5.2% for pressure, 6.3% for vapor temperature, 0.61% for liquid temperature, and 1.4%~12.4% for insulation heat flux. These results confirm the model's capability to reliably reproduce self-pressurization behavior under diverse operating conditions. The developed model provides an effective simulation tool to support the design of long-term storage, operational optimization, and safety evaluation of LH₂ tanks.

Key words: liquid hydrogen storage tank, self-pressurization, multi-node non-equilibrium thermodynamic model, thermal resistance network, insulation structure

中图分类号: