化工学报

• •    

海上风电制氢系统建模及热力学与经济学分析

高波1(), 王佳琪1, 刘志亮2, 赵玄烈3, 葛坤1()   

  1. 1.哈尔滨工程大学动力与能源工程学院,黑龙江 哈尔滨 150001
    2.哈尔滨工程大学材料科学与化学工程学院,黑龙江 哈尔滨 150001
    3.哈尔滨工程大学船舶工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2024-08-07 修回日期:2024-11-11 出版日期:2025-04-21 发布日期:2025-03-28
  • 通讯作者: 葛坤
  • 作者简介:高波(1997—),男,博士研究生,bogao@hrbeu.edu.cn
  • 基金资助:
    黑龙江省自然科学基金项目(YQ2023E029);教育部中央高校优秀青年团队项目(3072023JC0101)

Modeling and thermodynamic and economic analysis of offshore wind power-based hydrogen production systems

Bo GAO1(), Jiaqi WANG1, Zhiliang LIU2, Xuanlie ZHAO3, Kun GE1()   

  1. 1.College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
    2.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
    3.College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2024-08-07 Revised:2024-11-11 Online:2025-04-21 Published:2025-03-28
  • Contact: Kun GE

摘要:

为系统分析和评估海上风电制氢系统的热力学性能及经济性,构建了一个在热力学方面充分考虑附属设备、在经济学上兼顾海域特殊性的海上风电制氢系统模型。基于该模型,首先进行了参数研究和敏感性分析,以探讨运行参数对系统性能的影响规律;其次,利用我国海域真实风速数据进行了案例研究,模拟并评估了该海域的制氢能力及系统性能。研究结果表明,风速、电解槽运行温度及运行压力的提升均有助于增强制氢系统的运行性能,其中系统性能对风速变化表现出显著敏感性;案例研究显示该海域全年氢气产量为179908 kg,平均能量效率和㶲效率分别为26.6%和54.4%。然而,成本高昂的海上浮体结构使得氢气平准化成本显著上升。此外,该海域在夏季的制氢能力明显不足,特别是6月份的氢气产量最低,仅为10月或11月的15.3%。

关键词: 海上风电, 制氢, 模拟, 性能评估, 技术经济学, 可再生能源

Abstract:

To systematically analyze and evaluate the thermodynamic performance and economic viability of offshore wind power hydrogen production systems, a comprehensive model was developed that integrates both auxiliary equipment from a thermodynamic perspective and accounts for the unique characteristics of the marine environment within an economic context. Using this model, parameter studies and sensitivity analyses were conducted to investigate the effects of operational parameters on system performance. Subsequently, a case study was conducted using actual wind speed data from Chinese marine areas to simulate and assess hydrogen production capacity and system performance for that region. The results indicate that increases in wind speed, electrolyzer operating temperature, and operating pressure significantly enhance system performance, with the system being most sensitive to variations in wind speed. The case study showed that the annual hydrogen production in this marine area reached 179,908 kg, with average energy efficiency and exergy efficiency of 26.6% and 54.4%, respectively. However, the high costs associated with offshore floating structures significantly increased the levelized cost of hydrogen. Additionally, hydrogen production in this region was markedly insufficient during the summer months, especially in June, when production was only 15.3% of that in October or November.

Key words: offshore wind, hydrogen production, simulation, performance evaluation, techno-economic assessment, renewable energy

中图分类号: