[1] |
Wang Baozhen (王宝贞),Wang Lin (王琳). Treatment and Disposal of Landfill Leachate from Municipal Solids Waste (城市固体废物渗滤液处理与处置) [M]. Beijing: Chemical Industry Press, 2005
|
[2] |
Grady C P L, Daigger G T, Lim H C. Rotating Biological Contactor [M]. New York: Marcel Dekker, 1999
|
[3] |
Sun Hongwei(孙洪伟), Wang Shuying(王淑莹), Wang Ximing(王希明), Shi Xiaoning(时晓宁), Peng Yongzhen(彭永臻). Advanced nitrogen removal from landfill leachate with highly concentrated ammonia nitrogen via nitrite in SBR [J]. CIESC Journal (化工学报), 2009, 60(7): 1806-1811
|
[4] |
Zhu Rulong(朱如龙), Wang Shuying(王淑莹), Li Jun (李军), Wang Kai (王凯), Miao Lei (苗蕾), Peng Yongzhen(彭永臻). Advanced nitrogen removal of landfill leachate in single stage oxic pulsed SBR process [J]. CIESC Journal (化工学报), 2012,63(10): 3262-3268
|
[5] |
Wang Kai (王凯), Wang Shuying(王淑莹), Zhu Rulong(朱如龙), Miao Lei (苗蕾), Peng Yongzhen(彭永臻). Startup and realization of advanced nitrogen removal of landfill leachate by modified SBR [J]. Journal of Southeast University: Natural Science Edition(东南大学学报:自然科学版), 2013, 43(2): 386-391
|
[6] |
Coats E R, Mockos A, Loge F J. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal [J]. Bioresource Technology, 2011, 102: 1019-1027
|
[7] |
Winkler M, Coats E R, Brinkman C K. Advancing post-anoxic denitrification for biological nutrient removal [J]. Water Research, 2011, 45: 6119-6130
|
[8] |
Zhang H M, Dong F, Jiang T, Wei Y, Wang T, Yang F L. Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor [J]. Enzyme and Microbial Technology, 2011, 49: 215-222
|
[9] |
Yang Q, Gu S B, Peng Y Z, Wang S Y, Liu X H. Progress in the development of control strategies for the SBR process [J]. CLEAN-Soil, Air, Water, 2010, 38(8): 732-749
|
[10] |
Wang Y Y, Lu W M, Yang J, et al. A metabolic model and impact factors based on competition between glycogen accumulating organisms and phosphorus accumulating organisms in wastewater treatment [J]. Acta Scientiae Circumstantiae, 2009, 29(6): 1131-1138
|
[11] |
Mino T, Liu W, Kurisu F, Matsuo T. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes [J]. Water Science and Technology, 1995, 31(2): 25-34
|
[12] |
Filipe C, Daigger G T, Grady C. pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus- accumulating organisms [J]. Water Environment Research, 2001, 73(2): 223-232
|
[13] |
Liu W, Nakamura K, Matsuo T, Mino T. Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors—effect of PC feeding ratio [J]. Water Research, 1997, 31(6): 1430-1438
|
[14] |
Zhu R L, Wang S Y, Li J, Wang K, Miao L, Ma B, Peng Y Z. Biological nitrogen removal from landfill leachate using anaerobic-aerobic process: denitritation via organics in raw leachate and intracellular storage polymers of microorganisms [J]. Bioresource Technology, 2013, 128: 401-408
|
[15] |
Vocks M, Adam C, Lesjean B, Gnirss R, Kraume M. Enhanced post-denitrification without addition of an external carbon source in membrane bioreactors [J]. Water Research, 2005, 39(14): 3360-3368
|
[16] |
Wang X L, Zeng R, Dai Y, Peng Y Z, Yuan Z G. The denitrification capability of cluster Defluviioccus vanus-related glycogen-accumulating organisms [J]. Biotechnology and Bioengineering, 2008, 99(6): 1329- 1336
|
[17] |
Zeng R, Lemaire R, Yuan Z, Keller J. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal [J]. Water Science & Technology, 2004, 50(10): 163-170
|
[18] |
Chen H B, Yang Q, Li X M, Wang Y, Luo K, Zeng G M. Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor [J]. Chemosphere, 2013, 92(10): 1349-1355
|
[19] |
Wang K, Wang S Y, Zhu R L, Miao L, Peng Y Z. Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR [J]. Bioresource Technology, 2013, 134: 212-218
|
[20] |
Liu W, Mino T, Nakamura K, Matsuo T. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal [J]. Water Research, 1996, 30(1): 75-82
|
[21] |
Liu W, Mino T, Nakamura K, Matsuo T. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content [J]. Journal of Fermentation and Bioengineering, 1994, 77(5): 535-540
|
[22] |
Meng Q J, Yang F L, Liu L F, Meng F G. Effects of COD/N ratio and DO concentration on simultaneous nitrifcation and denitrifcation in an airlift internal circulation membrane bioreactor [J]. Journal of Environmental Sciences, 2008, 20(8): 933-939
|
[23] |
Smolders G, Vandermeij J, Vanloosdrecht M, Heijnen J J. A structured metabolic model for anaerobic and aerobic stoicchiometry and kinetics of the biological phosphorus removal process [J]. Biotechnology and Bioengineering, 1995, 47(3): 277-287
|
[24] |
Murnleitner E, Kuba T, Vanloosdrecht M, Heijnen J J. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal [J]. Biotechnology and Bioengineering, 1997, 54(5): 434-450
|
[25] |
Carvalho G, Lemos P C, Oehmen A, Reis M. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure [J]. Water Research, 2007, 41(19): 4383-4396
|