[1] |
BERNARDO D R, DANIEL W B, MARIA A Z C. Technological aspects of β-carotene production [J]. Food and Bioprocess Technology, 2011, 4: 693-701.
|
[2] |
KAMLA M, JAYANTI T, SNEH G. Microbial pigments: a review [J]. International Journal of Microbial Resource Technology, 2012, 1(4): 361-366.
|
[3] |
SUTTER R P, RAFELSON M E. Separation of β-factor synthesis from stimulated β-carotene synthesis in mated cultures of Blakeslea trispora [J]. Journal of Bacteriology, 1968, 95(2): 426-432.
|
[4] |
AUSTIN D G, BU'LOCK J D, WINSTANLEY D J. Trisporic acid biosynthesis and carotenogenesis in Blakesleea trispora [J]. Biochemical Journal, 1969, 113(3): 34.
|
[5] |
GOODAY G W, CARLILE M J. The discovery of fungal sex hormones(Ⅲ): Trisporic acid and its precursors [J]. Mycologist, 1997, 11(3): 126-130.
|
[6] |
徐军伟, 徐芳, 袁其朋. 三孢酸结构类似物对发酵生产番茄红素的影响 [J]. 北京化工大学学报, 2007, 34(2):134-137. XU J W, XU F, YUAN Q P. Effect of abscisic acid related compounds on lycopene production by Blakeslea trispora [J]. Journal of Beijing University of Chemical Technology, 2007, 34(2): 134-137.
|
[7] |
师艳秋, 辛秀兰, 袁其朋. 发酵促进剂在三孢布拉霉生产番茄红素中的应用 [J]. 食品与发酵工业, 2012, 38(1):133-136. SHI Y Q, XIN X L, YUAN Q P. The fermentation accelerant on lycopene production by Blakeslea trispora [J]. Food and Fermentation Industries, 2012, 38(1): 133-136.
|
[8] |
CHANDI G K, GILL B S. Production and characterization of microbial carotenoids as an alternative to synthetic colors: a review [J]. International Journal of Food Properties, 2011, 14(3): 503-513.
|
[9] |
BINA J M, LUIS M S. New mutants of Phycomyces blakesleeanus for β-carotene production [J]. Applied and Environmental Microbiology, 1997, 63(9): 3657-3661.
|
[10] |
WANG G S, HARTMUT G, KHALED A A, et al. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum [J]. Applied and Environmental Microbiology, 2012, 78(20): 7205-7215.
|
[11] |
HERNÁNDEZ-ALMANZA A, MONTAÑEZ-SÁENZ J, MARTÍNEZ-ÁVILA C, et al. Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation [J]. Food Bioscience, 2014, 7: 31-36.
|
[12] |
BEN-AMOTZ A. New mode of Dunaliella biotechnology: two-phase growth for β-carotene production [J]. Journal of Applied Phycology, 1995, 7(1): 65-68.
|
[13] |
SUN T, MIAO L T, LI Q Y, et al. Production of lycopene by metabolically-engineered Escherichia coli [J]. Biotechnology Letters, 2014, 36(7): 1515-1522.
|
[14] |
XIE W P, YE L D, LV X M, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 8-18.
|
[15] |
BARREDO J L. Microbial carotenoids from bacteria and microalgae [J]. Methods in Molecular Biology, 2012, 892: 133-141.
|
[16] |
张闯, 张玉苍, 何连芳. 不同微生物生产类胡萝卜素的研究现状 [J]. 食品研究与开发, 2011, 32(2): 180-183. ZHANG C, ZHANG Y C, HE L F. Comparative study on microbial production of carotenoids [J]. Food Research and Development, 2011, 32(2): 180-183.
|
[17] |
LAMPILA L E, WALLEN S E, BULLERMAN L B. A review of factors affecting biosynthesis of carotenoids by the order Mucorales [J]. Mycopathologia, 1985, 90: 65-80.
|
[18] |
BHOSALE P. Environmental and cultural stimulants in the production of carotenoids from microorganisms [J]. Applied Microbiology and Biotechnology, 2004, 63(4): 351-361.
|
[19] |
SATYA D, MODI V V, JANI U K. Chemical regulators of carotenogenesis by Blakeslea trispora [J]. Phytochemistry, 1980, 19(5): 795-798.
|
[20] |
KONSTADINA N, TRIANTAFYLLOS R. Oxidative stress response and morphological change of Blakeslea trispora induced by butylated hydroxytoluene during carotene production [J]. Applied Biochemistry and Biotechnology, 2010, 160: 2415-2423.
|
[21] |
XU F, YUAN Q P, ZHU Y. Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors [J]. Process Biochemistry, 2007, 42: 289-293.
|
[22] |
SEON-WON K, WEON-TAEK S, YOUNG-HOON P. Enhanced production of β-carotene from Blakeslea trispora with Span 20 [J]. Biotechnology Letters, 1997, 19(6): 561-562.
|
[23] |
GOVIND N S, AMIN A R, MODI V V. Stimulation of carotenogenesis in Blakeslea trispora by cupric ions [J]. Phytochemistry, 1982, 21(5): 1043-1044.
|
[24] |
THOMAS D M, HARRIS R C, KIRK J T O, et al. Studies on carotenogenesis in Blakeslea trispora (Ⅱ): The mode of action of trisporic acid [J]. Phytochemistry, 1967, 6(3): 361-366.
|
[25] |
SUN J, LI H, YUAN Q P. Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach [J]. PLoS ONE, 2012, 7(9): 443-452.
|
[26] |
SUN J, LI H, SUN X X, et al. Trisporic acid stimulates gene transcription of terpenoid biosynthesis in Blakeslea trispora [J]. Process Biochemistry, 2012, 47(12): 1889-1893.
|
[27] |
SUN J, SUN X X, TANG P W, et al. Molecular cloning and functional expression of two key carotene synthetic genes derived from Blakeslea trispora into E. coli for increased β-carotene production [J]. Biotechnology Letters, 2012, 34(11): 2077-2082.
|
[28] |
BARRERO A F, MAR H M, PILAR A, et al. A minor dihydropyran apocarotenoid from mated cultures of Blakeslea trispora [J]. Molecules, 2012, 17(11):12553-12559.
|
[29] |
DOREEN S, ANJA D, KLAUS-DIETER M, et al. Cooperative biosynthesis of trisporoids by the (+) and (-) mating types of the zygomycete Blakeslea trispora [J]. ChemBioChem, 2008, 9(18): 3004-3012.
|
[30] |
SCHACHTSCHABEL D, SCHIMEK C, WÖSTEMEYER J, et al. Biological activity of trisporoids and trisporoid analogues in Mucor mucedo (-) [J]. Phytochemistry, 2005, 66(11): 1358-1365.
|
[31] |
YAMUNA S, KERSTIN K, WILHELM B, et al. Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the Mucoralean fungi Blakeslea trispora and Mucor mucedo [J]. Applied and Environmental Microbiology, 2013, 79(23): 7466-7475.
|
[32] |
VERESHCHAGINA O A, TERESHINA V M. Trisporoids and carotenogenesis in Blakeslea trispora [J]. Microbiology, 2014, 83(5): 438-449.
|
[33] |
PRIETO A, SPALLA C, BIANCHI M. Biosynthesis of β-carotene by strains of Choanephoraceae [J]. Chemistry and Industry, 1964, 13: 551-551.
|
[34] |
SUTTER R P. Trisponic acid synthesis in Blakeslea trispora [J]. Science, 1970, 168(3939): 1590-1592.
|
[35] |
BU'LOCK J D, JONES B E, TAYLOR D, et al. Sex hormones in Mucorales. The incorporation of C20 and C18 precursors into trisporic acids [J]. Journal of General Microbiology, 1974, 80(1): 301-306.
|
[36] |
SUTTER R P, CAPAGE D A, HARRISON T L. Trisporic acid biosynthesis in separate plus and minus cultures of Blakeslea trispora: identification by Mucor assay of two mating-type-specific components [J]. Journal of Bacteriology, 1973, 114(3): 1074-1082.
|
[37] |
BU'LOCK J D, JONES B E, WINSKILL N. The apocarotenoid system of sex hormones and prohormones in Mucorales [J]. Pure and Applied Chemistry, 1976, 47: 191-202.
|
[38] |
SCHACHTSCHABEL D, BOLAND W. Efficient generation of a trisporoid library by combination of synthesis and biotransformation [J]. The Journal of Organic Chemistry, 2007, 72(4): 1366-1372.
|
[39] |
GESSLER N N, SOKOLOV A V, BELOZERSKAYA T A. Initial stages of trisporic acid synthesis in Blakeslea trispora [J]. Applied Biochemistry and Microbiology, 2002, 38(6): 536-543.
|
[40] |
HUMBERTO R M, CERDÁ-OLMEDO E, AL-BABILI S. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces [J]. Molecular Microbiology, 2011, 82(1): 199-208.
|
[41] |
ANKE B, MAREIKE R, KORNELIA S, et al.Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase [J]. Fungal Genetics and Biology, 2007, 44: 1096-1108.
|
[42] |
ELLENBERGER S, SCHUSTER S, WÖSTEMEYER J. Correlation between sequence, structure and function for trisporoid processing proteins in the model zygomycete Mucor mucedo [J]. Journal of Theoretical Biology, 2013, 320: 66-75.
|
[43] |
SCHIMEK C, WÖSTEMEYER J. Carotene derivatives in sexual communication of zygomycete fungi [J]. Phytochemistry, 2009, 70: 1867-1875.
|
[44] |
JANA W, OLAF S, ANKE B, et al. 4-Dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression [J]. Eukaryotic Cell, 2009, 8(1): 88-95.
|
[45] |
CHRISTINE S, ANNETT P, KORNELIA S, et al. 4-Dihydromethyltrisporate dehydrogenase, an enzyme of sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (-) mating types [J]. Fungal Genetics and Biology, 2005, 42: 804-812.
|
[46] |
JANA W, ANKE B, MELANIE K, et al. The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones [J]. Microbiology, 2012, 158: 1016-1023.
|
[47] |
QUILES-ROSILLO M D, RUIZ-VÁZQUEZ R M, VICTORIANO G, et al. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora [J]. Fungal Genetics and Biology, 2005, 42(2): 141-153.
|
[48] |
QUILES-ROSILLO M D, RUIZ-VÁZQUEZ R M, VICTORIANO G, et al. Cloning, characterization and heterologous expression of the Blakeslea trispora gene encoding orotidine-5′-monophosphate decarboxylase [J]. FEMS Microbiology Letters, 2003, 222(2): 229-236.
|
[49] |
ALEXANDER I, FELICIA J W, ANNA F, et al. Identification of the sex genes in an early diverged fungus [J]. Nature, 2008, 451:193-196.
|
[50] |
http://genome.jgi.doe.gov/.
|