[1] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64 (3): 788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64 (3): 788-800.
|
[2] |
McBride J, Sullivan A, Xia H, et al. Reconstruction of physiological signals using iterative retraining and accumulated averaging of neural network models[J]. Physiological Measurement, 2011, 32 (6): 661-675.
|
[3] |
Yin F, Wang H, Xie L, et al. Data driven model mismatch detection based on statistical band of Markov parameters[J]. Computers & Electrical Engineering, 2014, 40 (7): 2178-2192.
|
[4] |
李翔宇, 高宪文,侯延彬. 基于在线动态高斯过程回归抽油井动液面软测量建模[J]. 化工学报, 2015, 66 (6): 2150-2158. LI X Y, GAO X W, HOU Y B. Online dynamic Gaussian process regression for dynamic liquid level soft sensing of sucker-rod pumping well[J]. CIESC Journal, 2015, 66 (6): 2150-2158.
|
[5] |
Wallace M, Tsapatsoulis N, Kollias S. Intelligent initialization of resource allocating RBF networks[J]. Neural Networks, 2005, 18 (2): 117-122.
|
[6] |
Giantomassi A, Ippoliti G, Longhi S, et al. On-line steam production prediction for a municipal solid waste incinerator by fully tuned minimal RBF neural networks[J]. Journal of Process Control, 2011, 21 (1): 164-172.
|
[7] |
Song W, Liang J Z, He X L, et al. Taking advantage of improved resource allocating network and latent semantic feature selection approach for automated text categorization[J]. Applied Soft Computing, 2014, 21: 210-220.
|
[8] |
Back A D, Tsoi A C. FIR and IIR synapses, a new neural network architecture for time series modeling[J]. Neural Computation, 1991, 3 (3): 375-385.
|
[9] |
Delgado A, Kambhampati C, Warwick K. Dynamic recurrent neural network for system identification and control[J]. IEE Proceedings-Control Theory and Applications, 1995, 142 (4): 307-314.
|
[10] |
Zhang Y, JianG D, Wang J. A recurrent neural network for solving Sylvester equation with time-varying coefficients[J]. IEEE Transactions on Neural Networks, 2002, 13 (5): 1053-1063.
|
[11] |
Ash T. Dynamic node creation in back-propagation networks[J]. Connection Science, 1989, 1 (4): 365-375.
|
[12] |
Bartlett E B. Dynamic node architecture learning: an information theoretic approach[J]. Neural Networks, 1994, 7 (1): 129-140.
|
[13] |
Platt J. A resource-allocating network for function interpolation[J]. Neural Computation, 1991, 3 (2): 213-225.
|
[14] |
Kadirkamanathan V, Niranjan M. A function estimation approach to sequential learning with neural networks[J]. Neural Computation, 1993, 5 (6): 954-975.
|
[15] |
LU Y, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J]. IEEE Transactions on Neural Networks, 1998, 9 (2): 308-318.
|
[16] |
韩丽, 司风琪, 徐治皋. 改进的RAN网络及其在热工过程在线建模中的应用[J]. 锅炉技术, 2004, 35 (5): 12-15. HAN L, Si F Q, XU Z G. The improved RAN and its application in thermal processes modeling[J]. Boiler Technology, 2004, 35 (5): 12-15.
|
[17] |
李彬. 一种改进的 RAN 学习算法[J]. 模式识别与人工智能, 2006, 19 (2): 220-226. LI B. An improvement of the RAN learning algorithm[J]. Pattern Recognition and Artificial Intelligence, 2006, 19 (2): 220-226.
|
[18] |
LI Y, Sundararajan N, Saratchandran P. Analysis of minimal radial basis function network algorithm for real-time identification of nonlinear dynamic systems[J]. IEEE Proceedings-Control Theory and Applications, 2000, 147 (4): 476-484.
|