[1] |
BURGER J, SIEGERT M, STRÖFER E, et al. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11):3315-3319.
|
[2] |
ZHAO Y P, XU Z, CHEN H, et al. Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers[J]. Journal of Energy Chemistry, 2013, 22(6):833-836.
|
[3] |
LIU H Y, WANG Z, WANG J X, et al. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends[J]. Energy, 2016, 97:105-112.
|
[4] |
LIU H Y, WANG Z, ZHANG J, et al. Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines[J]. Applied Energy, 2015(in press). doi:10.1016/j.apenergy.2015. 10. 183.
|
[5] |
LIU J L, WANG H, LI Y, et al. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine[J]. Fuel, 2016, 177:206-216.
|
[6] |
KNIPPENBERG S, HAJGATÓ B, FRANÇOIS J P, et al. Theoretical study of the fragmentation pathways of norbornane in its doubly ionized ground state[J]. Journal of Physical Chemistry A, 2007, 111(42):10834-10848.
|
[7] |
BOYD R H. Some physical properties of polyoxymethylene dimethyl ethers[J]. Journal of Polymer Science, 1961, 50(153):133-141.
|
[8] |
IANNUZZI S E, BARRO C, BOULOUCHOS K, et al. Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber[J]. Fuel, 2016, 167:49-59.
|
[9] |
LI H J, SONG H L, XIA C G, et al. Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis:the acid sites control and reaction pathways[J]. Applied Catalysis B:Environmental, 2015, 165:466-476.
|
[10] |
WU Y J, LI Z, XIA C G. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers[J]. Industrial & Engineering Chemistry Research, 2016, 55(7):1859-1865.
|
[11] |
WU J B, ZHU H Q, QIN Z F, et al. High Si/Al ratio HZSM-5 zeolite:an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4):2353-2357.
|
[12] |
WANG F, ZHU G L, XIA C G, et al. Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids[J]. Journal of Molecular Catalysis A:Chemical, 2015, 408:228-236.
|
[13] |
施敏浩, 刘殿华, 赵光, 等. 甲醇和甲醛催化合成聚甲氧基二甲醚[J]. 化工学报, 2013, 64(3):931-935. SHI M H, LIU D H, ZHAO G, et al. Catalytic synthesis of polyoxymethylene dimethyl ethers from methanol and formaldehyde[J]. CIESC Journal, 2013, 64(3):931-935.
|
[14] |
ZHANG J Q, FANG D Y, LIU D H. Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde:performance tests and kinetic investigations[J]. Industrial & Engineering Chemistry Research, 2014, 53(35):13589-13597.
|
[15] |
ZHENG Y Y, TANG Q, WANG J F, et al. Synthesis of a green fuel additive over cation resins[J]. Chemical Engineering & Technology, 2013, 36(11):1951-1956.
|
[16] |
ZHENG Y Y, TANG Q, WANG J F, et al. Molecular size distribution in synthesis of polyoxymethylene dimethyl ethers and process optimization using response surface methodology[J]. Chemical Engineering Journal, 2015, 278:183-189.
|
[17] |
苗剑, 史高峰, 王国英, 等. 基于Aspen Plus的聚甲氧基二甲醚精馏过程模拟分析[J]. 计算机与应用化学, 2015, 32(1):119-123. MIAO J, SHI G F, WANG G Y, et al. Simulation of distillation process for polyoxymethylene dimethyl ethers by Aspen Plus[J]. Computers and Applied Chemistry, 2015, 32(1):119-123.
|
[18] |
BURGER J, STRÖFER E, HASSE H. Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth[J]. Chemical Engineering Research and Design, 2013, 91(12):2648-2662.
|
[19] |
韦先庆, 王清洋, 黄小科, 等. 一种制备聚甲氧基二甲醚的系统装置及工艺:102701923A[P]. 2012-10-03. WEI X Q, WANG Q Y, HUANG X K, et al. System device and process for preparing polyoxymethylene dimethyl ethers:102701923A[P]. 2012-10-03.
|
[20] |
ALBERT M, HAHNENSTEIN I, HASSE H, et al. Vapor-liquid and liquid-liquid equilibria in binary and ternary mixtures of water, methanol, and methylal[J]. Journal of Chemical & Engineering Data, 2001, 46(4):897-903.
|
[21] |
KUHNERT C, ALBERT M, BREYER S, et al. Phase equilibrium in formaldehyde containing multicomponent mixtures:experimental results for fluid phase equilibria of (formaldehyde+(water or methanol)+methylal)) and (formaldehyde+water+methanol+methyla) and comparison with predictions[J]. Industrial & Engineering Chemistry Research, 2006, 45(14):5155-5164.
|
[22] |
RENON H, PRAUSNITZ J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1):135-144.
|
[23] |
ABRAMS D S, PRAUSNITZ J M. Statistical thermodynamics of liquid mixtures:a new expression for the excess Gibbs energy of partly or completely miscible systems[J]. AIChE Journal, 1975, 21(1):116-128.
|
[24] |
INCE E, KIRBASLAR S I, SAHIN S. Liquid-liquid equilibria for ternary systems of water+formic acid+dibasic esters[J]. Journal of Chemical & Engineering Data, 2007, 52(5):1889-1893.
|
[25] |
GILANI H G, GILANI A G, SHEKARSARAEE S, et al. Liquid phase equilibria of the system (water+phosphoric acid+1-octanol) at T=(298.2, 308.2, and 318.2) K[J]. Fluid Phase Equilibria, 2012, 316:109-116.
|
[26] |
WANG C, GUO J, CHENG K, et al. Ternary (liquid+liquid) equilibria for the extraction of ethanol, or 2-propanol from aqueous solutions with 1,1'-oxybis(butane) at different temperatures[J]. Journal of Chemical Thermodynamics, 2016, 94:119-126.
|
[27] |
BENETI S C, LANZA M, MAZUTTI M A, et al. Experimental (liquid+liquid) equilibrium data for ternary and quaternary mixtures of fatty acid methyl and ethyl esters (FAME/FAEE) from soybean oil[J]. Journal of Chemical Thermodynamics, 2014, 68:60-70.
|
[28] |
BILGIN M. (Liquid+liquid) equilibria of (heptane, or hexane, or cyclohexane+toluene+1,3-dimethyl-2-imidazolidinone) ternary systems at T=298.15 K[J]. Journal of Chemical Thermodynamics, 2010, 42(4):530-535.
|