[1] |
BAKAR S H A, HAMID M K A, ALWI S R W. Selection of minimum temperature difference(ΔTmin) for heat exchanger network synthesis based on trade-off plot[J]. Applied Energy, 2016, 162(15):1259-1271.
|
[2] |
NOVAK P Z, KRAVANJA Z. A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters[J]. Energy, 2015, 92(3):373-382.
|
[3] |
GROSSMANN I E, APAP R M, CALFA B A. Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty[J]. Computers & Chemical Engineering, 2015, 37(1):1-4.
|
[4] |
LEE S, GROSSMANN I E. A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems[J]. Computers & Chemical Engineering, 2001, 25(11):1675-1697.
|
[5] |
YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration(Ⅰ):Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10):1151-1164.
|
[6] |
YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration(Ⅱ):Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10):1165-1184.
|
[7] |
ZHOU Y, TAN Y. GPU-based parallel multi-objective particle swarm optimization[J]. International Journal of Artificial Intelligence, 2011, 7(11):125-141.
|
[8] |
WANG J, WU Z. Opposition-based particle swarm optimization for solving large scale optimization problems on GPU[J]. Journal of Wuhan University(Natural Science), 2011, 57(2):148-154.
|
[9] |
MUSSI L, DAOLIO F, CAGNONI S. Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture[J]. Information Sciences, 2011, 181(20):4642-4657.
|
[10] |
MUSSI L, NASHED Y S G, CAGNONI S. GPU-based asynchronous particle swarm optimization[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. Dublin:ACM. 2011:1555-1562.
|
[11] |
WONG M L. Parallel multi-objective evolutionary algorithms on graphics processing units[C]//Proceedings of the Conference on Genetic and Evolutionary Computation. Canada:Companion Material, 2009:2515-2522.
|
[12] |
MUNAWAR A, WAHIB M, MUNETOMO M. Advanced genetic algorithm to solve MINLP problems over GPU[C]//Congress of Evolutionary Computation. LA:IEEE, 2011:318-325.
|
[13] |
康丽霞, 姜楠, 夏明星, 等. 基于OpenMP的并行GA加速求解换热网络设计[J]. 高校化学工程学报, 2016, 30(2):423-438. KANG L X, JIANG N, XIA M X, et al. Paralleled genetic algorithm for design of HEN based on OpenMP system[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2):423-438.
|
[14] |
WAH B W, CHEN Y X. Constraint partitioning in penalty formulations for solving temporal planning problems[J]. Artificial Intelligence, 2006, 170(3):187-231.
|
[15] |
BOGATAJ M, KRAVANJA Z. An alternative strategy for global optimization of heat exchanger networks[J]. Applied Thermal Engineering, 2012, 43(43):75-90.
|
[16] |
BJORKQVIST J, WESTERLUND T. Parallel solution of disjunctive MINLP problems[J]. Chemical Engineering Communications, 2002, 185(1):115-124.
|
[17] |
康丽霞, 张燕蓉, 唐亚哲, 等. 基于GPU加速求解MINLP问题的SQP并行算法[J]. 化工学报, 2012, 63(11):3597-3601. KANG L X, ZHANG Y R, TANG Y Z, et al. Paralleled SQP algorithm for solution of MINLP problems based on GPU acceleration[J].CIESC Journal, 2012, 63(11):3597-3601.
|
[18] |
CHAKROUN I, MELAB N. Operator-level GPU-accelerated branch and bound algorithms[J]. Procedia Computer Science, 2013, 18(1):280-289.
|
[19] |
CARNEIRO T, MURITIBA A E, NEGREIROS M. A new parallel schema for branch-and-bound algorithms using GPGPU[C]//Computer Architecture and High Performance Computing. Espirito Santo:IEEE, 2011:41-47.
|
[20] |
ZAMORA J M, GROSSMANN I E. A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits[J]. Computers & Chemical Engineering, 1998, 22(3):367-384.
|
[21] |
VIDYASHANKAR K, NARASIMHAN S. Comparison of heat exchanger network synthesis using Floudas and Yee superstructures[J]. Indian Chemical Engineer, 2010, 52(1):1-22.
|