[1] |
ELBEL S, LAWRENCE N. Review of recent developments in advanced ejector technology[J]. International Journal of Refrigeration, 2016, 62:1-18.
|
[2] |
祝银海, 厉彦忠, 鱼剑琳, 等. 基于制冷剂R141B的喷射器混合模型及其实验验证[J]. 化工学报, 2008, 59(9):2188-2193. ZHU Y H, LI Y Z, YU J L, et al. Experimental validation of a hybrid ejector model with refrigerant R141B[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(9):2188-2193.
|
[3] |
ABDULATEEF J M, SOPIAN K, AlGHOUL M A, et al. Review on solar-driven ejector refrigeration technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6):1338-1349.
|
[4] |
郝新月, 宣永梅, 陈光明, 等. 喷射/压缩复合制冷研究进展[J]. 流体机械, 2016, 44(8):69-77. HAO X Y, XUAN Y M, CHEN G M, et al. A review on ejector-mechanical compression hybrid refrigeration cycle[J]. Fluid Machinery, 2016, 44(8):69-77.
|
[5] |
CHEN J, JARALL S, HAVTUN H, et al. A review on versatile ejector applications in refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2015, 49:67-90.
|
[6] |
BESAGNI G, MEREU R, INZOLI F. Ejector refrigeration:a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 53:373-407.
|
[7] |
THONGTIP T, APHORNRATANA S. An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator[J]. Applied Thermal Engineering, 2017, 110:89-101.
|
[8] |
JIA Y, CAI W. Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant[J]. Energy Conversion and Management, 2012, 53(1):240-246.
|
[9] |
HUANG B J, TON W Z, WU C C, et al. Performance test of solar-assisted ejector cooling system[J]. International Journal of Refrigeration, 2014, 39:172-185.
|
[10] |
ZEYGHAMI M, GOSWAMI D Y, STEFANAKOS E. A review of solar thermo-mechanical refrigeration and cooling methods[J]. Renewable and Sustainable Energy Reviews, 2015, 51:1428-1445.
|
[11] |
张于峰, 赵薇, 田琦, 等. 喷射器性能及太阳能喷射制冷系统工质的优化[J]. 太阳能学报, 2007, 28(2):130-136. ZHANG Y F, ZHAO W, TIAN Q, et al. Investigation on performance of ejector and optimal refrigerants for solar ejector refrigeration system[J]. Acta Energiae Solaris Sinica, 2007, 28(2):130-136.
|
[12] |
CHEN W X, SHI C, ZHANG S, et al. Theoretical analysis of ejector refrigeration system performance under overall modes[J]. Applied Energy, 2017, 185:2074-2084.
|
[13] |
CHEN W X, LIU M, CHONG D T, et al. A 1D model to predict ejector performance at critical and sub-critical operational regimes[J]. International Journal of Refrigeration, 2013, 36(6):1750-1761.
|
[14] |
GHAEBI H, ROSTAMZADEH H, MATIN P S. Performance evaluation of ejector expansion combined cooling and power cycles[J]. Heat and Mass Transfer, 2017, 53(344):1-17.
|
[15] |
沈胜强, 张琨, 刘佳, 等. 喷嘴可调式喷射器性能的实验研究[J]. 化工学报, 2009, 60(6):1398-1401. SHEN S Q, ZHANG K, LIU J, et al. Experimental investigation on performance of adjustable ejector[J]. CIESC Journal, 2009, 60(6):1398-1401.
|
[16] |
LIN C, CAI W, LI Y, et al. The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system[J]. Energy, 2012, 46(1):148-155.
|
[17] |
DENNIS M, GARZOLI K. Use of variable geometry ejector with cold store to achieve high solar fraction for solar cooling[J]. International Journal of Refrigeration, 2011, 34(7):1626-1632.
|
[18] |
FU W, LI Y, LIU Z, et al. Numerical study for the influences of primary nozzle on steam ejector performance[J]. Applied Thermal Engineering, 2016, 106:1148-1156.
|
[19] |
CHEN Z, JIN X, SHIMIZU A. Effects of the nozzle configuration on solar-powered variable geometry ejectors[J]. Solar Energy, 2017, 150:275-286.
|
[20] |
YAN J, CHEN G, LIU C, et al. Experimental investigations on a R134a ejector applied in a refrigeration system[J]. Applied Thermal Engineering, 2017, 110:1061-1065.
|
[21] |
CHEN Z, DANG C, HIHARA E. Investigations on driving flow expansion characteristics inside ejectors[J]. International Journal of Heat and Mass Transfer, 2017, 108:490-500.
|
[22] |
ZHANG H, WANG L, JIA L, et al. Influence investigation of friction on supersonic ejector performance[J]. International Journal of Refrigeration, 2018, 85:229-239.
|
[23] |
YAPICI R, ERSOY H K, AKTOPRAKO?LU A, et al. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio[J]. International Journal of Refrigeration, 2008, 31(7):1183-1189.
|
[24] |
ZHU Y H, JIANG P. Experimental and analytical studies on the shock wave length in convergent and convergent-divergent nozzle ejectors[J]. Energy Conversion and Management, 2014, 88:907-914.
|
[25] |
XU X X, CHEN G M, TANG L M, et al. Experimental investigation on performance of transcritical CO2 heat pump system with ejector under optimum high-side pressure[J]. Energy, 2012, 44(1):870-877.
|
[26] |
CHONG D T, YAN J J, WU G S, et al. Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas[J]. Applied Thermal Engineering, 2009, 29(14):2799-2807.
|
[27] |
TAYLOR J. An Introduction to Error Analysis:the Study of Uncertainties in Physical Measurements[M]. Herndon:University Science Books, 1997.
|
[28] |
谢江维, 杜亚威, 刘燕, 等. 可调式蒸汽喷射器的三维数值模拟及分析[J]. 真空科学与技术学报, 2015, 35(7):884-891. XIE J W, DU Y W, LIU Y, et al. Numerical simulation and theoretical analysis of adjustable steam ejector[J]. Journal of Vacuum Science & Technology, 2015, 35(7):884-891.
|
[29] |
VARGA S, SOARES J, LIMA R, et al. On the selection of a turbulence model for the simulation of steam ejectors using CFD[J]. International Journal of Low-Carbon Technologies, 2017, 12(3):233-243.
|
[30] |
ARUN K M, TIWARI S, MANI A. Three-dimensional numerical investigations on rectangular cross-section ejector[J]. International Journal of Thermal Sciences, 2017, 122:257-265.
|