[1] |
SHEN B, YAMADA M, HIDAKA S, et al. Early onset of nucleate boiling on gas-covered biphilic surfaces[J]. Scientific Reports, 2017, 7(1):2036.
|
[2] |
KHESTANOVA E, GUINEA F, FUMAGALLI L, et al. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures[J]. Nature Communications, 2016, 7:12587.
|
[3] |
吴迎亚, 彭丽, 高金森, 等. 基于EMMS模型的气固鼓泡床的模拟及气泡特性的分析[J]. 化工学报, 2016, 67(8):3259-3267. WU Y Y, PENG L, GAO J S, et al. Numerical simulation of gas-solid bubbling bed and bubble characteristics based on EMMS drag model[J]. CIESC Journal, 2016, 67(8):3259-3267.
|
[4] |
吕雅琪, 聂德明, 林建忠. 三维双气泡融合的格子Boltzmann模拟[J]. 计算物理, 2015, (5):553-560. LÜ Y Q, NIE D M, LIN J Z. Lattice Boltzmann simulation of gas bubble merging in three dimensions[J]. Chinese Journal of Computational Physics, 2015, (5):553-560.
|
[5] |
WANG Y, CAI J, LI Q, et al. Diffuse interface simulation of bubble rising process:a comparison of adaptive mesh refinement and arbitrary Lagrange-Euler methods[J]. Heat & Mass Transfer, 2018, 54(6):1767-1778.
|
[6] |
ROUDET M, BILLE A, CAZIN S, et al. Experimental investigation of interfacial mass transfer mechanisms for a confined high-Reynolds number bubble rising in a thin gap[J]. AIChE Journal, 2017, 63(6):2394-2408.
|
[7] |
HUANG J, SAITO T. Discussion about the differences in mass transfer, bubble motion and surrounding liquid motion between a contaminated system and a clean system based on consideration of three-dimensional wake structure obtained from LIF visualization[J]. Chemical Engineering Science, 2017, 170:105-115.
|
[8] |
GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al. Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43(8):4320-4327.
|
[9] |
SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1993, 47(3):1815-1819.
|
[10] |
QIAN Y H, CHEN S Y. Finite size effect in lattice-BGK model[J]. International Journal of Modern Physics C, 1997, 8(4):763-771.
|
[11] |
SWIFT M, OBSBOME W, YEOMANS J. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letter, 1995, 75(5):830-833.
|
[12] |
HE X Y, SHAN X W, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1):13-16.
|
[13] |
GUO Z L, ZHAO T S. Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids[J]. Physical Review E, 2003, 68(3):035302-035312.
|
[14] |
张潇丹, 雍玉梅, 李文军, 等. REV尺度多孔介质格子Boltzmann方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(6):1698-1712. ZHANG X D, YONG Y M, LI W J, et al. Models and application of lattice Boltzmann method at REV-scale in porous media[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1698-1712.
|
[15] |
TENG S, CHEN Y, OHASHI H. Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing artificial compression scheme[J]. International Journal of Heat and Fluid Flow, 2000, 21(1):112-121.
|
[16] |
WERZNER X, MIGUEL A, MENDES A, et al. Numerical investigation on the depth filtration of liquid metals:influence of process conditions and inclusion properties[J]. Advanced Engineering Materials, 2015, 15(12):1037-1314.
|
[17] |
LEE T, LIN C L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[J]. Journal of Computational Physics, 2005, 206(1):16-47.
|
[18] |
INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of Computational Physics, 2004, 198(2):628-644.
|
[19] |
KATAOKA T, TSUTAHARA M. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio[J]. Physical Review E, 2004, 69(2):035701.
|
[20] |
孙涛, 李维仲, 杨柏丞, 等. 气泡群上升过程相互作用的格子Boltzmann三维数值模拟[J]. 化工学报, 2013, 64(5):1586-1591. SUN T, LI W Z, YANG B C, et al. Three-dimensional numerical simulation of multiple bubbles rising and interaction with lattice Boltzmann method[J]. CIESC Journal, 2013, 64(5):1586-1591.
|
[21] |
CHEN H N, SUN D K, DAI T, et al. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio[J]. Acta Phys. Sin., 2013, 62(12):120502.
|
[22] |
ALEXANDER F J, CHEN S, STERLING J D. Lattice Boltzmann thermohydrodynamics[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1993, 47(4):R2249.
|
[23] |
QIAN Y H. Simulating thermohydrodynamics with lattice BGK models[J]. Journal of Scientific Computing, 1993, 8(3):231-242.
|
[24] |
CHEN Y, OHASHI H, AKIYAMA M. Two-parameter thermal lattice BGK model with a controllable Prandtl number[J]. Journal of Scientific Computing, 1997, 12(2):169-185.
|
[25] |
BARTOLONI A, BATTISTA C, CABASINO S, et al. Lbe simulations of Rayleigh-Bénard convection on the ape100 parallel processor[J]. International Journal of Modern Physics C, 2011, 4(5):993-1006.
|
[26] |
SHAN X. Simulation of Rayleigh-Bénard convection using lattice Boltzmann method[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1998, 55(3):2780-2788.
|
[27] |
PALMER B J, RECTOR D R. Lattice-Boltzmann algorithm for simulating thermal two-phase flow[J]. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 2000, 61(5A):5295-5306.
|
[28] |
GUO Z, SHI B, ZHENG C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4):325-342.
|
[29] |
王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法[J]. 物理学报, 2017, 66(4):156-168. WANG Z, ZHANG J Z, WANG H. Non-orthogonal multiple-relaxation time lattice Boltzmann method for axisymmetric thermal flows[J]. Acta Phys. Sin., 2017, 66(4):156-168.
|
[30] |
INAMURO T, YOSHINO M, INOUE H, et al. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem[J]. Journal of Computational Physics, 2002, 179(1):201-215.
|
[31] |
CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Math. Comput., 1968, 22(104):745-762.
|