CIESC Journal ›› 2018, Vol. 69 ›› Issue (8): 3452-3459.DOI: 10.11949/j.issn.0438-1157.20180027
Previous Articles Next Articles
WANG Jie, ZHANG Yin, GUO Jianjian, ZHAO Lili, ZHAO Yongxiang
Received:
2018-01-09
Revised:
2018-05-21
Online:
2018-08-05
Published:
2018-08-05
Supported by:
supported by the National Natural Science Foundation of China(21303097) and the International S&T Cooperation Program of China(2013DFA40460).
王杰, 张因, 郭健健, 赵丽丽, 赵永祥
通讯作者:
张因
基金资助:
国家自然科学基金青年科学基金项目(21303097);国家国际科技合作专项(2013DFA40460)。
CLC Number:
WANG Jie, ZHANG Yin, GUO Jianjian, ZHAO Lili, ZHAO Yongxiang. γ-Valerolactone synthesis from levulinic acid hydrogenation over Ni/ZrO2-SiO2 catalyst[J]. CIESC Journal, 2018, 69(8): 3452-3459.
王杰, 张因, 郭健健, 赵丽丽, 赵永祥. Ni/ZrO2-SiO2催化剂催化乙酰丙酸加氢合成γ-戊内酯[J]. 化工学报, 2018, 69(8): 3452-3459.
[1] | ALONSO D M, WETTSTEIN S G, DUMESIC J A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass[J]. Green Chemistry, 2013, 15(3):584-595. |
[2] | HORVATH I T, MEHDI H, FABOS V, et al. Valerolactone-a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry, 2008, 10(2):238-242. |
[3] | WEINGARTEN R, CONNER W C, HUBER G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst[J]. Energy & Environmental Science, 2012, 5(6):7559-7574. |
[4] | ABDELRAHMAN O A, HEYDEN A, BOND J Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C[J]. ACS Catalysis, 2014, 4(4):1171-1181. |
[5] | WRIGHT W R, PALKOVITS R. Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone[J]. ChemSusChem, 2012, 5(9):1657-1667. |
[6] | MANZER L E. Catalytic synthesis of a-methylene-g-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General, 2004, 272:249-256. |
[7] | UPARE P P, LEE J M, HWANG D W, et al. Selective hydrogenation of levulinic acid to g-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2):287-292. |
[8] | AL-SHAAL M G, WRIGHT W R H, PALKOVITS R. Exploring the ruthenium catalysed synthesis of g-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions[J]. Green Chemistry, 2012, 14(5):1260-1263. |
[9] | DU X L, HE L, ZHAO S, et al. Hydrogen-independent reductive transformation of carbohydrate biomass into gamma-valerolactone and pyrrolidone derivatives with supported gold catalysts[J]. Angew Chem. Int. Ed. Eng., 2011, 50(34):7815-7819. |
[10] | YAN K, LAFLEUR T, WU G, et al. Highly selective production of value-added g-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles[J]. Applied Catalysis A:General, 2013, 468:52-58. |
[11] | SHIMIZU K I, KANNO S, KON K. Hydrogenation of levulinic acid to g-valerolactone by Ni and MoOx co-loaded carbon catalysts[J]. Green Chemistry, 2014, 16(8):3899-3903. |
[12] | JONES D R, IQBAL S, ISHIKAWA S, et al. The conversion of levulinic acid into g-valerolactone using Cu-ZrO2catalysts[J]. Catal. Sci. Technol., 2016, 6(15):6022-6030. |
[13] | SUN D, OHKUBO A, ASAMI K, et al. Vapor-phase hydrogenation of levulinic acid and methyl levulinate to g-valerolactone over non-noble metal-based catalysts[J]. Molecular Catalysis, 2017, 437:105-113. |
[14] | OBREG N I, CORRO E, IZQUIERDO U, et al. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5):656-662. |
[15] | CHRISTIAN R V, HORACE D B, HIXON R M. Derivatives of g-valerolactone, 1, 4-pentanedioland1, 4-di-(b-cyanoethoxy)-pentane[J]. Journal of the American Chemical Society, 1947, 69:1961-1963. |
[16] | HENGST K, SCHUBERT M, CARVALHO H W P, et al. Synthesis of g-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts[J]. Applied Catalysis A:General, 2015, 502:18-26. |
[17] | MOHAN V, VENKATESHWARLU V, PRAMOD C V, et al. Vapour phase hydrocyclisation of levulinic acid to g-valerolactone over supported Ni catalysts[J]. Catal. Sci. Technol., 2014, 4(5):1253-1259. |
[18] | MOHAN V, RAGHAVENDRA C, PRAMOD C V, et al. Ni/H-ZSM-5 as a promising catalyst for vapour phase hydrogenation of levulinic acid at atmospheric pressure[J]. RSC Advances, 2014, 4(19):9660-9668. |
[19] | HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to g-valerolactone[J]. Green Chemistry, 2012, 14(4):1064-1072. |
[20] | GAO C G, ZHAO Y X, LIU D S. Liquid phase hydrogenation of maleic anhydride over nickel catalyst supported on ZrO2-SiO2 composite aerogels[J]. Catalysis Letters, 2007, 118(1/2):50-54. |
[21] | ZHANG Y, PAN L, GAO C, et al. Synthesis of ZrO2-SiO2 mixed oxide by alcohol-aqueous heating method[J]. Journal of Sol-Gel Science and Technology, 2011, 58(2):572-579. |
[22] | MILLER J B, RANKIN S E, KO E I. Strategies in controlling the homogeneity of zirconia-silica aerogels:effect of preparation on textural and catalytic properties[J]. Journal of Catalysis, 1994, 148(2):673-682. |
[23] | ANDERSON J, FERGUSSON C, RODRIGUEZRAMOS I, et al. Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels[J]. Journal of Catalysis, 2000, 192(2):344-354. |
[24] | MEYER C I, REGENHARDT S A, BERTONE M E, et al. Gas-phase maleic anhydride hydrogenation over Ni/SiO2-Al2O3 catalysts:effect of metal loading[J]. Catalysis Letters, 2013, 143(10):1067-1073. |
[25] | 刘迎新, 陈吉祥, 张继炎. Ni/SiO2催化剂上间二硝基苯液相加氢制间苯二胺[J]. 催化学报, 2003, 24(3):224-228. LIU Y X, CHEN J X, ZHANG J Y. Liquid-phase hydrogenation of m-dinitrobenzene to m-phenylenediamine over silica-supported nickel catalyst[J]. Chinese Journal of Catalysis, 2003, 24(3):224-228. |
[26] | SEO J G, YOUN M H, SONG I K. Effect of SiO2-ZrO2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO2-ZrO2 catalysts[J]. Journal of Power Sources, 2007, 168(1):251-257. |
[27] | JING Q, ZHENG X. Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor[J]. Energy, 2006, 31(12):2184-2192. |
[28] | AGUILAR D H, TORRES-GONZALEZ L C, TORRES-MARTINEZ L M, et al. A study of the crystallization of ZrO2 in the sol-gel system:ZrO2-SiO2[J]. Journal of Solid State Chemistry, 2001, 158(2):349-357. |
[29] | SUDHAKAR M, KUMAR V V, NARESH G, et al. Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M=Pd, Pt, Ru, Cu, Ni) catalysts[J]. Applied Catalysis B:Environmental, 2016, 180:113-120. |
[30] | GALLETTI A M R, ANTONETTI C, DE LUISE V, et al. A sustainable process for the production of g-valerolactone by hydrogenation of biomass-derived levulinic acid[J]. Green Chemistry, 2012, 14(3):688-694. |
[1] | Lihui WANG, Huan LIU, Heyu LI, Xiaobing ZHENG, Yanjun JIANG, Jing GAO. Preparation and application of core-shell hydrophobic magnetic dendritic fibrous organosilica immobilized lipase [J]. CIESC Journal, 2021, 72(9): 4861-4871. |
[2] | Yin ZHANG, Jianjian GUO, Huanjie REN, Juan CHENG, Haitao LI, Jianbing WU, Yongxiang ZHAO. Effect of intercalation anions on catalytic performance of hydrotalcite-like precursor Ni-Al2O3 catalyst for levulinic acid hydrogenation [J]. CIESC Journal, 2020, 71(8): 3614-3624. |
[3] | Qian ZHANG, Yanhua WANG. Selective hydrogenation of α, β-unsaturated aldehydes and ketones over thermo regulated phase-separable Ir nano catalyst [J]. CIESC Journal, 2019, 70(9): 3396-3403. |
[4] | Jiacheng TU, Le SANG, Ning AI, Jianhong XU, Jisong ZHANG. Research progress of continuous hydrogenation in organic synthesis [J]. CIESC Journal, 2019, 70(10): 3859-3868. |
[5] | LI Chenyang, FENG Miao, CUI Haifeng, CAO Guiping, LÜ Hui, CHEN Rongqi. Preparation of carbon nanotube catalyst on structure-modified cordierite monolith for polystyrene hydrogenation [J]. CIESC Journal, 2017, 68(7): 2746-2754. |
[6] | CHEN Lungang, LIU Yong, DING Mingyue, ZHANG Xinghua, LI Yuping, ZHANG Qi, WANG Tiejun, MA Longlong. Removal of oxygenates in aqueous phase product of F-T process by catalytic hydrogenation over Ru catalyst [J]. CIESC Journal, 2014, 65(11): 4347-4355. |
[7] | JIANG Nan1,XIE Nan1,QI Wei1,2,3,SU Rongxin1,2,3,HE Zhimin1,2,3. Process intensification of levulinic acid from glucose using sulfuric acid as catalyst [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2888-2893. |
[8] | SUN Meijuan1,HUANG Xiaodian1,GUAN Qingqing1,ZHANG Chunyun2,CHAI Xinsheng2,TIAN Senlin1,NING Ping1,GU Junjie1. Degradation behavior of phenol though catalytic hydrogenation in supercritical ethanol [J]. Chemical Industry and Engineering Progree, 2014, 33(07): 1902-1907. |
[9] | GAO Xueyi,WU Yanwei,WANG Kebing. Preparation of levulinic acid from hydrolysis of Salix psammophila catalyzed by acid and its separation and purification [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 242-246. |
[10] | SUN Hongzhi,WANG Qian,SONG Mingxiu,Abudoulajiang ? Nasi’er,WANG Fuyan,ZHU Weiqun. Progress in the chemical utilization of carbon dioxide [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1666-1672. |
[11] | LIU Tao,LI Lijun,HUANG Wenyi,LIU Liu. Solid superacid catalyst SO42?/ Kaolin for preparation of levulinic acid [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1300-1306. |
[12] | DENG Li1,LIAO Bing1,GUO Qingxiang2. Recent progress in selective catalytic conversion of cellulose into key platform molecules [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 245-254. |
[13] | ZENG Shanshan, LIN Lu, LIU Di, PENG Lincai. Catalytic conversion of glucose to levulinic acid by solid heteropolyacid salts [J]. CIESC Journal, 2012, 63(12): 3875-3881. |
[14] | ZHANG Junhua1,GUO Haiguang1,HUAN Changyong1,JIANG Li2,SHEN Qiang1. Preparation of 4,4'-diaminostilbene-2,2'-disulfonic acid by Pt/C catalytic hydrogenation [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 2070-2074. |
[15] | LIU Tao,LI Lijun,LIU Liu,LI Guo,LI Wei,QIN Gui. Solid superacid catalyst S2O82―/ZrO2-TiO2- Al 2O3 for preparation of levulinic acid [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 1975-1979. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||