[1] |
ALONSO D M, WETTSTEIN S G, DUMESIC J A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass[J]. Green Chemistry, 2013, 15(3):584-595.
|
[2] |
HORVATH I T, MEHDI H, FABOS V, et al. Valerolactone-a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry, 2008, 10(2):238-242.
|
[3] |
WEINGARTEN R, CONNER W C, HUBER G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst[J]. Energy & Environmental Science, 2012, 5(6):7559-7574.
|
[4] |
ABDELRAHMAN O A, HEYDEN A, BOND J Q. Analysis of kinetics and reaction pathways in the aqueous-phase hydrogenation of levulinic acid to form γ-valerolactone over Ru/C[J]. ACS Catalysis, 2014, 4(4):1171-1181.
|
[5] |
WRIGHT W R, PALKOVITS R. Development of heterogeneous catalysts for the conversion of levulinic acid to gamma-valerolactone[J]. ChemSusChem, 2012, 5(9):1657-1667.
|
[6] |
MANZER L E. Catalytic synthesis of a-methylene-g-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General, 2004, 272:249-256.
|
[7] |
UPARE P P, LEE J M, HWANG D W, et al. Selective hydrogenation of levulinic acid to g-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2):287-292.
|
[8] |
AL-SHAAL M G, WRIGHT W R H, PALKOVITS R. Exploring the ruthenium catalysed synthesis of g-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions[J]. Green Chemistry, 2012, 14(5):1260-1263.
|
[9] |
DU X L, HE L, ZHAO S, et al. Hydrogen-independent reductive transformation of carbohydrate biomass into gamma-valerolactone and pyrrolidone derivatives with supported gold catalysts[J]. Angew Chem. Int. Ed. Eng., 2011, 50(34):7815-7819.
|
[10] |
YAN K, LAFLEUR T, WU G, et al. Highly selective production of value-added g-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles[J]. Applied Catalysis A:General, 2013, 468:52-58.
|
[11] |
SHIMIZU K I, KANNO S, KON K. Hydrogenation of levulinic acid to g-valerolactone by Ni and MoOx co-loaded carbon catalysts[J]. Green Chemistry, 2014, 16(8):3899-3903.
|
[12] |
JONES D R, IQBAL S, ISHIKAWA S, et al. The conversion of levulinic acid into g-valerolactone using Cu-ZrO2catalysts[J]. Catal. Sci. Technol., 2016, 6(15):6022-6030.
|
[13] |
SUN D, OHKUBO A, ASAMI K, et al. Vapor-phase hydrogenation of levulinic acid and methyl levulinate to g-valerolactone over non-noble metal-based catalysts[J]. Molecular Catalysis, 2017, 437:105-113.
|
[14] |
OBREG N I, CORRO E, IZQUIERDO U, et al. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5):656-662.
|
[15] |
CHRISTIAN R V, HORACE D B, HIXON R M. Derivatives of g-valerolactone, 1, 4-pentanedioland1, 4-di-(b-cyanoethoxy)-pentane[J]. Journal of the American Chemical Society, 1947, 69:1961-1963.
|
[16] |
HENGST K, SCHUBERT M, CARVALHO H W P, et al. Synthesis of g-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts[J]. Applied Catalysis A:General, 2015, 502:18-26.
|
[17] |
MOHAN V, VENKATESHWARLU V, PRAMOD C V, et al. Vapour phase hydrocyclisation of levulinic acid to g-valerolactone over supported Ni catalysts[J]. Catal. Sci. Technol., 2014, 4(5):1253-1259.
|
[18] |
MOHAN V, RAGHAVENDRA C, PRAMOD C V, et al. Ni/H-ZSM-5 as a promising catalyst for vapour phase hydrogenation of levulinic acid at atmospheric pressure[J]. RSC Advances, 2014, 4(19):9660-9668.
|
[19] |
HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to g-valerolactone[J]. Green Chemistry, 2012, 14(4):1064-1072.
|
[20] |
GAO C G, ZHAO Y X, LIU D S. Liquid phase hydrogenation of maleic anhydride over nickel catalyst supported on ZrO2-SiO2 composite aerogels[J]. Catalysis Letters, 2007, 118(1/2):50-54.
|
[21] |
ZHANG Y, PAN L, GAO C, et al. Synthesis of ZrO2-SiO2 mixed oxide by alcohol-aqueous heating method[J]. Journal of Sol-Gel Science and Technology, 2011, 58(2):572-579.
|
[22] |
MILLER J B, RANKIN S E, KO E I. Strategies in controlling the homogeneity of zirconia-silica aerogels:effect of preparation on textural and catalytic properties[J]. Journal of Catalysis, 1994, 148(2):673-682.
|
[23] |
ANDERSON J, FERGUSSON C, RODRIGUEZRAMOS I, et al. Influence of Si/Zr ratio on the formation of surface acidity in silica-zirconia aerogels[J]. Journal of Catalysis, 2000, 192(2):344-354.
|
[24] |
MEYER C I, REGENHARDT S A, BERTONE M E, et al. Gas-phase maleic anhydride hydrogenation over Ni/SiO2-Al2O3 catalysts:effect of metal loading[J]. Catalysis Letters, 2013, 143(10):1067-1073.
|
[25] |
刘迎新, 陈吉祥, 张继炎. Ni/SiO2催化剂上间二硝基苯液相加氢制间苯二胺[J]. 催化学报, 2003, 24(3):224-228. LIU Y X, CHEN J X, ZHANG J Y. Liquid-phase hydrogenation of m-dinitrobenzene to m-phenylenediamine over silica-supported nickel catalyst[J]. Chinese Journal of Catalysis, 2003, 24(3):224-228.
|
[26] |
SEO J G, YOUN M H, SONG I K. Effect of SiO2-ZrO2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO2-ZrO2 catalysts[J]. Journal of Power Sources, 2007, 168(1):251-257.
|
[27] |
JING Q, ZHENG X. Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor[J]. Energy, 2006, 31(12):2184-2192.
|
[28] |
AGUILAR D H, TORRES-GONZALEZ L C, TORRES-MARTINEZ L M, et al. A study of the crystallization of ZrO2 in the sol-gel system:ZrO2-SiO2[J]. Journal of Solid State Chemistry, 2001, 158(2):349-357.
|
[29] |
SUDHAKAR M, KUMAR V V, NARESH G, et al. Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M=Pd, Pt, Ru, Cu, Ni) catalysts[J]. Applied Catalysis B:Environmental, 2016, 180:113-120.
|
[30] |
GALLETTI A M R, ANTONETTI C, DE LUISE V, et al. A sustainable process for the production of g-valerolactone by hydrogenation of biomass-derived levulinic acid[J]. Green Chemistry, 2012, 14(3):688-694.
|