CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1297-1309.DOI: 10.11949/0438-1157.20190677
• Energy and environmental engineering • Previous Articles Next Articles
Shuai PAN1(),Changwei JI1,2(),Shuofeng WANG1,2,Bing WANG1,Jiejie SUN1,Pengfei QI1
Received:
2019-06-17
Revised:
2019-08-27
Online:
2020-03-05
Published:
2020-03-05
Contact:
Changwei JI
潘帅1(),纪常伟1,2(),汪硕峰1,2,王兵1,孙洁洁1,戚朋飞1
通讯作者:
纪常伟
作者简介:
潘帅(1995—),男,硕士研究生,基金资助:
CLC Number:
Shuai PAN, Changwei JI, Shuofeng WANG, Bing WANG, Jiejie SUN, Pengfei QI. Experimental study on electro-thermal characteristics of aged power batteries with ternary material[J]. CIESC Journal, 2020, 71(3): 1297-1309.
潘帅, 纪常伟, 汪硕峰, 王兵, 孙洁洁, 戚朋飞. 废旧三元动力电池电热特性的实验研究[J]. 化工学报, 2020, 71(3): 1297-1309.
Add to citation manager EndNote|Ris|BibTeX
名称 | 规格 |
---|---|
正极材料 | 三元材料(NCA) |
负极材料 | 层状石墨 |
半径 | 21 mm |
高度 | 70 mm |
质量 | 69 g |
能量密度 | 268 W·h·kg-1 |
标称容量 | 5000 mA·h |
标称电压 | 3.63 V |
最大充电电流 | 1.00 C |
最大放电电流 | 1.50 C |
充电截止电压 | 4.20 V |
放电截止电压 | 2.50 V |
工作适宜温度范围 | 0~45℃ |
Table 1 Specification of parameters for 21700 battery
名称 | 规格 |
---|---|
正极材料 | 三元材料(NCA) |
负极材料 | 层状石墨 |
半径 | 21 mm |
高度 | 70 mm |
质量 | 69 g |
能量密度 | 268 W·h·kg-1 |
标称容量 | 5000 mA·h |
标称电压 | 3.63 V |
最大充电电流 | 1.00 C |
最大放电电流 | 1.50 C |
充电截止电压 | 4.20 V |
放电截止电压 | 2.50 V |
工作适宜温度范围 | 0~45℃ |
循环次数 | SOH/% | 峰高度 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 6.057 | 9.832 | 6.057 | 14.112 |
50 | 94.5 | 6.057 | 9.528 | 6.057 | 14.072 |
100 | 88.0 | 5.980 | 8.934 | 5.984 | 13.973 |
150 | 77.8 | 5.582 | 7.483 | 5.625 | 11.940 |
200 | 59.7 | 峰形消失 | 6.231 | 5.234 | 11.129 |
250 | 29.8 | 峰形消失 | 5.056 | 5.056 | 8.647 |
Table 2 Height variation of peak points
循环次数 | SOH/% | 峰高度 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 6.057 | 9.832 | 6.057 | 14.112 |
50 | 94.5 | 6.057 | 9.528 | 6.057 | 14.072 |
100 | 88.0 | 5.980 | 8.934 | 5.984 | 13.973 |
150 | 77.8 | 5.582 | 7.483 | 5.625 | 11.940 |
200 | 59.7 | 峰形消失 | 6.231 | 5.234 | 11.129 |
250 | 29.8 | 峰形消失 | 5.056 | 5.056 | 8.647 |
循环次数 | SOH/% | 曲线面积 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 0.724 | 2.101 | 0.988 | 0.964 |
50 | 94.5 | 0.703 | 1.833 | 0.981 | 0.950 |
100 | 88.0 | 0.643 | 1.773 | 0.980 | 0.942 |
150 | 77.8 | 0.556 | 1.574 | 0.926 | 0.919 |
200 | 59.7 | 0.442 | 1.233 | 0.873 | 0.894 |
250 | 29.8 | 0.203 | 0.863 | 0.870 | 0.783 |
Table 3 Area variation of curves
循环次数 | SOH/% | 曲线面积 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 0.724 | 2.101 | 0.988 | 0.964 |
50 | 94.5 | 0.703 | 1.833 | 0.981 | 0.950 |
100 | 88.0 | 0.643 | 1.773 | 0.980 | 0.942 |
150 | 77.8 | 0.556 | 1.574 | 0.926 | 0.919 |
200 | 59.7 | 0.442 | 1.233 | 0.873 | 0.894 |
250 | 29.8 | 0.203 | 0.863 | 0.870 | 0.783 |
循环次数 | SOH/% | 峰顶点对应电压 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 3.430 | 3.626 | 3.925 | 4.104 |
50 | 94.5 | 3.439 | 3.636 | 3.925 | 4.106 |
100 | 88.0 | 3.450 | 3.639 | 3.926 | 4.108 |
150 | 77.8 | 3.461 | 3.639 | 3.929 | 4.112 |
200 | 59.7 | 峰形消失 | 3.655 | 3.929 | 4.112 |
250 | 29.8 | 峰形消失 | 3.685 | 3.908 | 4.112 |
Table 4 Voltage variation corresponding to peak points
循环次数 | SOH/% | 峰顶点对应电压 | |||
---|---|---|---|---|---|
峰① | 峰② | 峰③ | 峰④ | ||
0 | 100.0 | 3.430 | 3.626 | 3.925 | 4.104 |
50 | 94.5 | 3.439 | 3.636 | 3.925 | 4.106 |
100 | 88.0 | 3.450 | 3.639 | 3.926 | 4.108 |
150 | 77.8 | 3.461 | 3.639 | 3.929 | 4.112 |
200 | 59.7 | 峰形消失 | 3.655 | 3.929 | 4.112 |
250 | 29.8 | 峰形消失 | 3.685 | 3.908 | 4.112 |
1 | Sack T, Matty T. Li-ion battery technology for compact high power sources (CHPS) [J]. J. Power Sources, 2001, 96(1): 47-51. |
2 | Gerssen-Gondelach S J, Faaij A P C. Performance of batteries for electric vehicles on short and longer term[J]. Journal of Power Sources, 2012, 212: 111-129. |
3 | Sakti A, Azevedo I M L, Fuchs E R H, et al. Consistency and robustness of forecasting for emerging technologies: the case of Li-ion batteries for electric vehicles[J]. Energy Policy, 2017, 106: 415-426. |
4 | 叶飞鹏,王莉,连芳,等. 钠离子电池研究进展[J]. 化工进展, 2013, 32(8): 1789-1795. |
Ye F P,Wang L,Lian F,et al. Advance in Na-ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(8): 1789-1795. | |
5 | 沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1): 309-316. |
Shen J N, He Y J, Ma Z F. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1): 309-316. | |
6 | 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69(1): 327-340. |
He L P, Sun S Y, Yu J G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340. | |
7 | Li D, Danilov D L, Zwikirsch B, et al. Modeling the degradation mechanisms of C6/LiFePO4 batteries[J]. Journal of Power Sources, 2018, 375: 106-117. |
8 | Birkl C R, Roberts M R, Mcturk E, et al. Degradation diagnostics for lithium ion cells[J]. J. Power Sources, 2017, 341: 373-386. |
9 | Barré A, Deguilhem B, Sébastien G, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241(11): 680-689. |
10 | 张克宇, 姚耀春. 锂离子电池磷酸铁锂正极材料的研究进展[J]. 化工进展, 2015, 34(1): 166-172. |
Zhang K Y, Yao Y C. Research progress in LiFePO4 cathode material for lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 166-172. | |
11 | 王运灿,罗琳,刘钰,等. 锂离子电池聚合物正极材料研究进展[J]. 化工进展, 2013, 32(1): 134-139. |
Wang Y C,Luo L,Liu Y,et al. Research development on polymer cathode material for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 134-139. | |
12 | Eddahech A, Briat O, Vinassa J M. Performance comparison of four lithium-ion battery technologies under calendar aging[J]. Energy, 2015, 84: 542-550. |
13 | 徐晶. 梯次利用锂离子电池容量和内阻变化特性研究[D]. 北京: 北京交通大学, 2014. |
Xu J. Research on the variation characteristics of capacity and internal resistance of lithium-ion batteries echelon use[D]. Beijing: Beijing Jiaotong University, 2014. | |
14 | Wang K, Gao F, Zhu Y, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. |
15 | 时玮, 张言茹, 陈大分, 等. 锰酸锂动力电池寿命测试方法[J]. 汽车工程, 2015, 37(1): 67-71. |
Shi W, Zhang Y R, Chen D F, et al. Lifespan test method for LiMn2O4 traction batteries[J]. Automotive Engineering, 2015, 37(1): 67-71. | |
16 | Gao Y, Jiang J, Zhang C, et al. Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode[J]. Journal of Power Sources, 2018, 400: 641-651. |
17 | Gao Y, Jiang J, Zhang C, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103-114. |
18 | Ma Z, Jiang J, Shi W, et al. Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications: aging mechanism identification[J]. Journal of Power Sources, 2015, 274(3): 29-40. |
19 | Ouyang M, Chu Z, Lu L, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286: 309-320. |
20 | Zhang Y, Wang C Y, Tang X. Cycling degradation of an automotive LiFePO4, lithium-ion battery[J]. Journal of Power Sources, 2011, 196(3): 1513-1520. |
21 | Börner M, Friesen A, Grützke M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392. |
22 | Doughty D H, Crafts C C. FreedomCAR: electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications: SAND 2005-3123 [R]. Sandia National Laboratories, 2006. |
23 | Yang F, Wang D, Zhao Y, et al. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries[J]. Energy, 2018, 145: 486-495. |
24 | 张熙贵, 张建, 杨传铮, 等. LiMeO2材料中锂和镍原子混排的模拟和实验研究[J]. 无机材料学报, 2010, 25(1): 8-12. |
Zhang X G, Zhang J, Yang C Z, et al. Simulation and experimental study on mixed arrange of Li/Ni atoms in LiMeO2 materials[J]. Journal of Inorganic Materials, 2010, 25(1): 8-12. | |
25 | 彭继明, 陈玉华, 刘世成, 等. 不同镍钴锰比对xLi2MnO3-(1-x)LiMO2正极材料的结构和电化学性能的影响[J]. 化工学报, 2016, 67(7): 2950-2955. |
Peng J M, Chen Y H, Liu S C, et al. Effect of Ni/Co/Mn molar ratio on structure and electrochemical properties of xLi2MnO3-(1-x)LiMO2 cathode material[J]. CIESC Journal, 2016, 67(7): 2950-2955. | |
26 | 肖忠良, 胡超明, 宋刘斌, 等. 正极材料LiNi0.8Co0.1Mn0.1O2的合成工艺优化及电化学性能[J]. 化工学报, 2017, 68(4): 1653-1659. |
Xiao Z L, Hu C M, Song L B, et al. Optimization for synthesis technology of LiNi0.8Co0.1Mn0.1O2 cathode material and electrochemical performance[J]. CIESC Journal, 2017, 68(4): 1653-1659. | |
27 | Li W, Liu X, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials, 2018, 8(15): 1703154. |
28 | Shin J S, Han C H, Jung U H, et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 47-52. |
29 | 颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538. |
Yan X D, Ma X L, Li W Y, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538. | |
30 | Anseán D, Dubarry M, Devie A, et al. Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging[J]. Journal of Power Sources, 2016, 321: 201-209. |
31 | Han X, Ouyang M, Lu L, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. |
32 | 郭琦沛, 张彩萍, 高洋, 等. 基于容量增量曲线的三元锂离子电池健康状态估计方法[J]. 全球能源互联网, 2018, 1(2): 82-89. |
Guo Q P, Zhang C P, Gao Y, et al. Incremental capacity curve based state of health estimation for LNMCO lithium-ion batteries[J]. Journal of Global Energy Interconnection, 2018, 1(2): 82-89. | |
33 | 张昊. 基于IC曲线特征参数的锂离子电池SOH估计及DSP实现[D]. 北京: 北京交通大学,2018. |
Zhang H. SOH estimation and DSP implementation of lithium ion battery based on characteristic parameters of IC curve[D]. Beijing: Beijing Jiaotong University, 2018. | |
34 | Dubarry M, Truchot C, Cugnet M, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications (Part I): Initial characterizations[J]. Journal of Power Sources, 2011, 196: 10328-10335. |
35 | Zhang C, Jiang J, Gao Y, et al. Charging optimization in lithium-ion batteries based on temperature rise and charge time[J]. Applied Energy, 2017, 194: 569-577. |
36 | Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications (Part II): Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196(23): 10336-10343. |
37 | 薛楠, 孙丙香, 白恺, 等. 基于容量增量分析的复合材料锂电池分区间循环衰退机理[J]. 电工技术学报, 2017, 32(13): 145-152. |
Xue N, Sun B X, Bai K, et al. Different state of charge range cycle degradation mechanism of composite material lithium-ion batteries based on incremental capacity analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 145-152. | |
38 | Bandhauer T M, Garimella S, Fuller T F. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery[J]. Journal of Power Sources, 2014, 247: 618-628. |
39 | 梁金华, 李建秋, 卢兰光, 等. 纯电动车电池组散热必要性的初步分析[J]. 汽车工程, 2012, 34(7): 589-591. |
Liang J H, Li J Q, Lu L G, et al. A preliminary analysis on the necessity of battery pack cooling for pure electric vehicles[J]. Automotive Engineering, 2012, 34(7): 589-591. | |
40 | Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries - a post-mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. |
[1] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[2] | LI Juan, SHI Yumei, WANG Rongshun. Effect of Working Temperature on the Resistance Characteristic of a Pleated Stainless Steel Woven Filter [J]. , 2009, 17(6): 949-954. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||