CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2203-2212.DOI: 10.11949/0438-1157.20201046
• Surface and interface engineering • Previous Articles Next Articles
TAN Zhuowei1(),YANG Liuyang2,WANG Zhenbo1,DOU Xiaohui2,ZHANG Dalei2(),ZHANG Mingyang3,JIN Youhai1
Received:
2020-09-27
Revised:
2020-10-12
Online:
2021-04-05
Published:
2021-04-05
Contact:
ZHANG Dalei
谭卓伟1(),杨留洋2,王振波1,豆肖辉2,张大磊2(),张明阳3,金有海1
通讯作者:
张大磊
作者简介:
谭卓伟(1990—),男,博士研究生,基金资助:
CLC Number:
TAN Zhuowei, YANG Liuyang, WANG Zhenbo, DOU Xiaohui, ZHANG Dalei, ZHANG Mingyang, JIN Youhai. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field[J]. CIESC Journal, 2021, 72(4): 2203-2212.
谭卓伟, 杨留洋, 王振波, 豆肖辉, 张大磊, 张明阳, 金有海. 高剪切力流场下X80管线钢局部腐蚀深坑诱导局部湍流交互机理研究[J]. 化工学报, 2021, 72(4): 2203-2212.
Add to citation manager EndNote|Ris|BibTeX
成分 | 含量/%(质量) |
---|---|
Mn | 1.83 |
Si | 0.28 |
C | 0.063 |
Cr | 0.03 |
S | 0.0006 |
P | 0.011 |
Ni | 0.03 |
Ti | 0.016 |
Nb | 0.061 |
Mo | 0.22 |
V | 0.059 |
Table 1 Chemical composition of X80 pipeline steel
成分 | 含量/%(质量) |
---|---|
Mn | 1.83 |
Si | 0.28 |
C | 0.063 |
Cr | 0.03 |
S | 0.0006 |
P | 0.011 |
Ni | 0.03 |
Ti | 0.016 |
Nb | 0.061 |
Mo | 0.22 |
V | 0.059 |
v/ (m·s-1) | Rs/(Ω·cm2) | Qdl/(Ω-1·cm-2·s-n) | Rct/(Ω·cm2) | L/(H·cm-2) | RL/(Ω·cm2) | Qf/(Ω-1·cm-2·s-n) | Rf/(Ω·cm2) |
---|---|---|---|---|---|---|---|
3 | 14.75 | 1.8×10-3 | 30.05 | 33.93 | 187.2 | ||
5 | 15.42 | 1.4×10-4 | 36.84 | 6.8×10-4 | 15.07 | ||
7 | 15.26 | 1.0×10-3 | 19.74 | 29.79 | 47.37 |
Table 2 Equivalent circuit fitting of EIS data
v/ (m·s-1) | Rs/(Ω·cm2) | Qdl/(Ω-1·cm-2·s-n) | Rct/(Ω·cm2) | L/(H·cm-2) | RL/(Ω·cm2) | Qf/(Ω-1·cm-2·s-n) | Rf/(Ω·cm2) |
---|---|---|---|---|---|---|---|
3 | 14.75 | 1.8×10-3 | 30.05 | 33.93 | 187.2 | ||
5 | 15.42 | 1.4×10-4 | 36.84 | 6.8×10-4 | 15.07 | ||
7 | 15.26 | 1.0×10-3 | 19.74 | 29.79 | 47.37 |
v/(m·s-1) | CK | OK | SiK | MnK | FeK |
---|---|---|---|---|---|
3 | 19.96 | 40.69 | 0.47 | 0.68 | 38.19 |
5 | 23.70 | 54.22 | 0.40 | 0.76 | 20.92 |
7 | 20.14 | 58.55 | 0.36 | 0.41 | 20.54 |
Table 3 Test data of EDS
v/(m·s-1) | CK | OK | SiK | MnK | FeK |
---|---|---|---|---|---|
3 | 19.96 | 40.69 | 0.47 | 0.68 | 38.19 |
5 | 23.70 | 54.22 | 0.40 | 0.76 | 20.92 |
7 | 20.14 | 58.55 | 0.36 | 0.41 | 20.54 |
1 | Hu Z Y, Duan D L, Hou S H, et al. Preliminary study on corrosion behaviour of carbon steel in oil-water two-phase fluids[J]. Journal of Materials Science & Technology, 2015, 31(12): 1274-1281. |
2 | 李连波. 20CrMo抽油杆腐蚀机理研究[D]. 青岛: 中国石油大学, 2008. |
Li L B. Study on corrosion mechanism of 20CrMo sucker rod[D]. Qingdao: China University of Petroleum (East China), 2008. | |
3 | Zeng L, Zhang G A, Guo X P. Erosion-corrosion at different locations of X65 carbon steel elbow[J]. Corrosion Science, 2014, 85: 318-330. |
4 | Stack M M, Abdulrahman G H. Mapping erosion-corrosion of carbon steel in oil-water solutions: effects of velocity and applied potential[J]. Wear, 2012, 274/275: 401-413. |
5 | 李自力, 程远鹏, 毕海胜, 等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展[J]. 化工学报, 2014, 65(2): 406-414. |
Li Z L, Cheng Y P, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields[J]. CIESC Journal, 2014, 65(2): 406-414. | |
6 | Barmatov E, Hughes T, Nagl M. Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions[J]. Corrosion Science, 2015, 92: 85-94. |
7 | Zhang G A, Zeng L, Huang H L, et al. A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation[J]. Corrosion Science, 2013, 77: 334-341. |
8 | Kim H J, Kim K H. Intuitional experiment and numerical analysis of flow characteristics affected by flow accelerated corrosion in elbow pipe system[J]. Nuclear Engineering and Design, 2016, 301: 183-188. |
9 | Wei L, Pang X L, Gao K W. Effect of flow rate on localized corrosion of X70 steel in supercritical CO2 environments[J]. Corrosion Science, 2018, 136: 339-351. |
10 | 寇杰, 惠军福. 流动腐蚀研究进展[J]. 油气田地面工程, 2007, 26(10): 4-5. |
Kou J, Hui J F. Reseach progress of corrosion under flow [J]. Oil-Gasfield Surface Engineering, 2007, 26(10): 4-5. | |
11 | Tran T, Brown B, Nesic S. Corrosion of mild steel in an aqueous CO2 environment-basic electrochemical mechanisms revisited[J]. Nace International Corrosion Conference, 2015, 212(14): 5671-5682. |
12 | 曹楚南. 腐蚀电化学原理[M]. 3版. 北京: 化学工业出版社, 2008: 268. |
Cao C N. Principles of electrochemistry of corrosion[M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 268. | |
13 | Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: effect of CO2 on iron dissolution reaction[J]. Corrosion Science, 2017, 129: 146-151. |
14 | Obot I B, Onyeachu I B, Umoren S A. Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines[J]. Corrosion Science, 2019, 159: 108140. |
15 | Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines[J]. Energy & Fuels, 2012, 26(7): 4098-4111. |
16 | Tan Z W, Zhang D L, Yang L Y, et al. Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions[J]. Tribology International, 2020, 146: 106145. |
17 | 雍兴跃, 林玉珍, 刘景军, 等. 碳钢在管流体系中的流动腐蚀动力学模型[J]. 化工学报, 2002, 53(7): 680-684. |
Yong X Y, Lin Y Z, Liu J J, et al. Flow-induced corrosion kinetics model of carbon steel in flow loop system[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(7): 680-684. | |
18 | Tan Z W, Yang L Y, Zhang D L, et al. Development mechanism of internal local corrosion of X80 pipeline steel[J]. Journal of Materials Science & Technology, 2020, 49: 186-201. |
19 | 何昌春, 徐磊, 陈伟, 等. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034. |
He C C, Xu L, Chen W, et al. Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower[J]. CIESC Journal, 2019, 70(3): 1027-1034. | |
20 | Ezuber H M, Al Shater A. Influence of environmental parameters on the corrosion behavior of 90/10 cupronickel tubes in 3.5% NaCl[J]. Desalination and Water Treatment, 2016, 57(15): 6670-6679. |
21 | Eliyan F F, Alfantazi A. Mechanisms of corrosion and electrochemical significance of metallurgy and environment with corrosion of iron and steel in bicarbonate and carbonate solutions—a review[J]. Corrosion, 2014, 70(9): 880-898. |
22 | Zhang S H, Hou L F, Wei H, et al. Failure analysis of an oil pipe wall perforated by pitting corrosion[J]. Materials and Corrosion, 2018, 69(8): 1123-1130. |
23 | Hamadou L, Kadri A, Benbrahim N. Impedance investigation of thermally formed oxide films on AISI 304L stainless steel[J]. Corrosion Science, 2010, 52(3): 859-864. |
24 | 刘旭文, 熊金平, 曹京宜, 等. EIS法研究3种配套涂层体系的腐蚀电化学行为[J]. 化工学报, 2008, 59(3): 659-664. |
Liu X W, Xiong J P, Cao J Y, et al. Electrochemical corrosion behavior of three coating systems by EIS[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(3): 659-664. | |
25 | Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water[J]. Corrosion Science, 2010, 52(8): 2716-2724. |
26 | Sridhar N, Dunn D S, Anderko A M, et al. Effects of water and gas compositions on the internal corrosion of gas pipelines—modeling and experimental studies[J]. Corrosion, 2001, 57(3): 221-235. |
27 | Li Q, Hu H T, Cheng Y F. Corrosion of pipelines in CO2-saturated oil-water emulsion flow studied by electrochemical measurements and computational fluid dynamics modeling[J]. Journal of Petroleum Science and Engineering, 2016, 147: 408-415. |
28 | Zhu M, Du C W, Li X G, et al. Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution[J]. Corrosion Science, 2014, 87: 224-232. |
29 | Medeiros M J, Pletcher D, Sidorin D. The catalysis of carbon dioxide hydration by acetate ion[J]. Journal of Electroanalytical Chemistry, 2008, 619/620: 83-86. |
[1] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[2] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[3] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[4] | Yiping FAN, Chunxi LU. Research progress on dedust scheme of coupling centrifugal force field with moving bed filtration [J]. CIESC Journal, 2023, 74(1): 157-169. |
[5] | Changliang HAN, Jingqing XIN, Guangbin YU, Junxiu LIU, Qi'ao XU, Anka YAO, Peng YIN. Experimental and numerical simulation on three-dimensional heat flow field of supercritical nitrogen in micro-channel [J]. CIESC Journal, 2022, 73(2): 653-662. |
[6] | Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells [J]. CIESC Journal, 2022, 73(10): 4625-4637. |
[7] | LI Wenjin, ZHOU Yongjun, YUAN Mingyue, HE Hua, SUN Jianping. Comparative study of the flow characteristics in several frame-type impeller stirred tanks [J]. CIESC Journal, 2021, 72(4): 1998-2005. |
[8] | Zhigang LIU,Kaiming DONG,Mingming LYU,Can JI,Yake JIANG. Study on characteristics of flow field in micro pin fin array based on Micro-PIV [J]. CIESC Journal, 2021, 72(10): 5094-5101. |
[9] | Qiang ZHAO, Hang GUO, Fang YE, Chongfang MA. State of the art of flow field plates of proton exchange membrane fuel cells [J]. CIESC Journal, 2020, 71(5): 1943-1963. |
[10] | Fengling YANG, Cuixun ZHANG, Tenglong SU. Power and flow characteristics of flexible-blade Rushton impeller [J]. CIESC Journal, 2020, 71(2): 614-625. |
[11] | Liqiang SUN, Di WANG, Jianfei SONG, Jiangyun WANG, Yaodong WEI. Effect of ashless separator on dynamic characteristics of gas phase flow field in cyclone separator [J]. CIESC Journal, 2019, 70(6): 2202-2210. |
[12] | Dongjiang YOU, Jianyun WEI, Xuejing LI, Jingyuan LOU. Simulation study on flow field optimization of flow battery based on flow frame design [J]. CIESC Journal, 2019, 70(11): 4437-4448. |
[13] | CHEN Jianyi, GAO Rui, LIU Xiulin, LI Zhenfa. Measurement of separation performance and numerical analysis on flow field of different cyclone separators in parallel [J]. CIESC Journal, 2016, 67(8): 3287-3296. |
[14] | ZHANG Cailiang, JIN Zuyu, GU Xueping, FENG Lianfang. Dispersion of minor PS-MAMA component in polymer melt under two mixing modes [J]. CIESC Journal, 2016, 67(2): 485-493. |
[15] | BAO Suyang, ZHOU Yongjun, WANG Lulu, XIN Wei, TAO Lanlan. V3V study on flow field characteristics in a stirred vessel with Rushton turbine impeller [J]. CIESC Journal, 2016, 67(11): 4580-4586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||