CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4861-4871.DOI: 10.11949/0438-1157.20210283
• Biochemical engineering and technology • Previous Articles Next Articles
Lihui WANG1(),Huan LIU1,Heyu LI2,Xiaobing ZHENG1,3(),Yanjun JIANG1,3,Jing GAO1
Received:
2021-02-23
Revised:
2021-05-05
Online:
2021-09-05
Published:
2021-09-05
Contact:
Xiaobing ZHENG
王立晖1(),刘焕1,李赫宇2,郑晓冰1,3(),姜艳军1,3,高静1
通讯作者:
郑晓冰
作者简介:
王立晖(1981—),男,博士研究生,基金资助:
CLC Number:
Lihui WANG, Huan LIU, Heyu LI, Xiaobing ZHENG, Yanjun JIANG, Jing GAO. Preparation and application of core-shell hydrophobic magnetic dendritic fibrous organosilica immobilized lipase[J]. CIESC Journal, 2021, 72(9): 4861-4871.
王立晖, 刘焕, 李赫宇, 郑晓冰, 姜艳军, 高静. 核壳结构磁性树枝状纤维形有机硅固定化脂肪酶制备及其应用[J]. 化工学报, 2021, 72(9): 4861-4871.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 Adsorption process of CALB at different concentrations on the MMOSNs (a) and effect of initial lipase concentration on CALB loading and specific activity of CALB@MMOSNs(b)
1 | Shi J, Wu Y, Zhang S, et al. Bioinspired construction of multi-enzyme catalytic systems[J]. Chemical Society Reviews, 2018, 47(12): 4295-4313. |
2 | Tamura T, Hamachi I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems[J]. Journal of the American Chemical Society, 2019, 141(7): 2782-2799. |
3 | Liu Z H, Wang K, Chen Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2[J]. Nature Catalysis, 2020, 3(3): 274-288. |
4 | Benjamin S, Pandey A. Candida rugosa lipases: molecular biology and versatility in biotechnology[J]. Yeast, 1998, 14(12): 1069-1087. |
5 | Jakovetić Tanasković S, Jokić B, Grbavčić S, et al. Immobilization of Candida antarctica lipase B on Kaolin and its application in synthesis of lipophilic antioxidants[J]. Applied Clay Science, 2017, 135: 103-111. |
6 | Adlercreutz P. Immobilisation and application of lipases in organic media[J]. Chemical Society Reviews, 2013, 42(15): 6406-6436. |
7 | Ansorge-Schumacher M B, Thum O. Immobilised lipases in the cosmetics industry[J]. Chemical Society Reviews, 2013, 42(15): 6475-6490. |
8 | Kuwahara Y, Yamanishi T, Kamegawa T, et al. Activity, recyclability, and stability of lipases immobilized on oil-filled spherical silica nanoparticles with different silica shell structures[J]. ChemCatChem, 2013, 5(8): 2527-2536. |
9 | Rodrigues R C, Ortiz C, Berenguer-Murcia Á, et al. Modifying enzyme activity and selectivity by immobilization[J]. Chemical Society Reviews, 2013, 42(15): 6290-6307. |
10 | Rueda N, dos Santos J C S, Ortiz C, et al. Chemical modification in the design of immobilized enzyme biocatalysts: drawbacks and opportunities[J]. The Chemical Record, 2016, 16(3): 1436-1455. |
11 | Kalantari M, Kazemeini M, Tabandeh F, et al. Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme[J]. Journal of Materials Chemistry, 2012, 22(17): 8385-8393. |
12 | Yue Q, Sun J G, Kang Y J, et al. Advances in the interfacial assembly of mesoporous silica on magnetite particles[J]. Angewandte Chemie, 2020, 132(37): 15936-15949. |
13 | Lei Z L, Ren N, Li Y L, et al. Fe3O4/SiO2-g-PSStNa polymer nanocomposite microspheres (PNCMs) from a surface-initiated atom transfer radical polymerization (SI-ATRP) approach for pectinase immobilization[J]. Journal of Agricultural and Food Chemistry, 2009, 57(4): 1544-1549. |
14 | Hou C, Wang Y, Zhu H, et al. Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization[J]. Journal of Materials Chemistry B, 2015, 3(14): 2883-2891. |
15 | Chen Z, Xu W, Jin L, et al. Synthesis of amine functionalized Fe3O4@C nanoparticles for lipase immobilization[J]. Journal of Materials Chemistry A, 2014, 2: 18339-18344. |
16 | Zhao M, Zhang X, Deng C. Rational synthesis of novel recyclable Fe₃O₄@MOF nanocomposites for enzymatic digestion[J]. Chemical Communications (Cambridge, England), 2015, 51(38): 8116-8119. |
17 | Polshettiwar V, Cha D, Zhang X X, et al. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology[J]. Angewandte Chemie, 2010, 122(50): 9846-9850. |
18 | Moon D S, Lee J K. Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure[J]. Langmuir, 2012, 28(33): 12341-12347. |
19 | Moon D S, Lee J K. Formation of wrinkled silica mesostructures based on the phase behavior of pseudoternary systems[J]. Langmuir, 2014, 30(51): 15574-15580. |
20 | Schmid R D, Verger R. Lipases: interfacial enzymes with attractive applications[J]. Angewandte Chemie International Edition, 1998, 37(12): 1608-1633. |
21 | Verger R. 'Interfacial activation' of lipases: facts and artifacts[J]. Trends in Biotechnology, 1997, 15(1): 32-38. |
22 | Brzozowski A M, Derewenda U, Derewenda Z S, et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex[J]. Nature, 1991, 351(6326): 491-494. |
23 | Rodrigues R C, Virgen-Ortíz J J, dos Santos J C S, et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions[J]. Biotechnology Advances, 2019, 37(5): 746-770. |
24 | Gao J, Kong W X, Zhou L Y, et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization[J]. Chemical Engineering Journal, 2017, 309: 70-79. |
25 | Kalantari M, Yu M, Yang Y, et al. Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis[J]. Nano Research, 2017, 10(2): 605-617. |
26 | Bilal M, Zhao Y P, Rasheed T, et al. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review[J]. International Journal of Biological Macromolecules, 2018, 120: 2530-2544. |
27 | Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. |
28 | Bouhrara M, Ranga C, Fihri A, et al. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(9): 1192-1199. |
29 | Zhou L Y, He Y, Ma L, et al. Conversion of levulinic acid into alkyl levulinates: using lipase immobilized on meso-molding three-dimensional macroporous organosilica as catalyst[J]. Bioresource Technology, 2018, 247: 568-575. |
30 | Jiang Y J, Liu H, Wang L H, et al. Virus-like organosilica nanoparticles for lipase immobilization: characterization and biocatalytic applications[J]. Biochemical Engineering Journal, 2019, 144: 125-134. |
31 | Linsha V, Aboo Shuhailath K, MA·hesh K V, et al. Biocatalytic conversion efficiency of steapsin lipase immobilized on hierarchically porous biomorphic aerogel supports[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4692-4703. |
32 | Ali Z, Tian L, Zhang B, et al. Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@ KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability[J]. New Journal of Chemistry, 2017, 41(16): 8222-8231. |
33 | Shao B B, Liu Z F, Zeng G M, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal[J]. Journal of Hazardous Materials, 2019, 362: 318-326. |
34 | Tong S M, Zhu L L, Wang X N, et al. Optimization of cephalosporin C acylase immobilization[J]. E3S Web of Conferences, 2019, 78: 02003. |
35 | Al-Lolage F, Bartlett P N, Gounel S, et al. Site-directed immobilization of bilirubin oxidase for electrocatalytic oxygen reduction[J]. ACS Catalysis, 2019, 9(3): 2068-2078. |
36 | Liu J Y, Liu Y, Jin D X, et al. Immobilization of trypsin onto large-pore mesoporous silica and optimization enzyme activity via response surface methodology[J]. Solid State Sciences, 2019, 89: 15-24. |
37 | Shikha S, Thakur K G, Bhattacharyya M S. Facile fabrication of lipase to amine functionalized gold nanoparticles to enhance stability and activity[J]. RSC Advances, 2017, 7(68): 42845-42855. |
38 | Sharma S, Kanwar S S. Organic solvent tolerant lipases and applications[J]. The Scientific World Journal, 2014, 2014: 625258. |
39 | Jiang Y J, Sun W Y, Zhou L Y, et al. Improved performance of lipase immobilized on tannic acid-templated mesoporous silica nanoparticles[J]. Applied Biochemistry and Biotechnology, 2016, 179(7): 1155-1169. |
40 | Gao J, Wang Y, Du Y J, et al. Construction of biocatalytic colloidosome using lipase-containing dendritic mesoporous silica nanospheres for enhanced enzyme catalysis[J]. Chemical Engineering Journal, 2017, 317: 175-186. |
41 | Jeong H, Jang S K, Hong C Y, et al. Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid[J]. Bioresource Technology, 2017, 225: 183-190. |
42 | Xie W L, Zang X Z. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: a magnetic biocatalyst for interesterification of soybean oil[J]. Food Chemistry, 2017, 227: 397-403. |
43 | Poppe J K, Garcia-Galan C, Matte C R, et al. Optimization of synthesis of fatty acid methyl esters catalyzed by lipase B from Candida antarctica immobilized on hydrophobic supports[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 94: 51-56. |
44 | Lee A, Chaibakhsh N, Rahman M B A, et al. Optimized enzymatic synthesis of levulinate ester in solvent-free system[J]. Industrial Crops and Products, 2010, 32(3): 246-251. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Ruining HE, Yun ZOU, Meng SHI, Yang LI, Jing XU, Zhangfa TONG. Preparation of supported ionic liquid [HSO3-BMIM][HSO4]/SiO2 and its catalytic property in the esterification of acetic acid and ethanol [J]. CIESC Journal, 2022, 73(9): 3880-3894. |
[3] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[4] | CAI Dongren, ZHAN Guowu, XIAO Jingran, QIU Ting. Synthesis of sulfonic acid functionalized ionic liquids for catalytic applications in biodiesel production [J]. CIESC Journal, 2021, 72(7): 3601-3612. |
[5] | Chengye ZUO, Rui TU, Xiaobin DING, Weihong XING. Recovery of isobutanol from esterified wastewater by PDMS composite membrane [J]. CIESC Journal, 2020, 71(9): 4189-4199. |
[6] | Yin ZHANG, Jianjian GUO, Huanjie REN, Juan CHENG, Haitao LI, Jianbing WU, Yongxiang ZHAO. Effect of intercalation anions on catalytic performance of hydrotalcite-like precursor Ni-Al2O3 catalyst for levulinic acid hydrogenation [J]. CIESC Journal, 2020, 71(8): 3614-3624. |
[7] | Hao XU,Yang LI,Chengkang XIA,Ruining HE,Yun ZOU,Zhangfa TONG. Kinetics of esterification of glycerol with acetic acid catalyzed by pyridine bisulfate ionic liquid [J]. CIESC Journal, 2020, 71(11): 5178-5187. |
[8] | Chenliang WU, Xiaoqing LI, Chao ZHANG, Hefeng ZHANG, Xinhuan YAN. Fe-Ce/SiO2 solid base catalyst for preparing dimethyl carbonate [J]. CIESC Journal, 2020, 71(1): 297-305. |
[9] | Ling YANG,Cheng ZHENG,Zhenming LI. Microwave assisted synthesis of tributyl citrate by ionic liquids [J]. CIESC Journal, 2019, 70(S2): 287-293. |
[10] | Hui SHANG, Yu DING, Wenhui ZHANG. Research progress of microwave assisted biodiesel production [J]. CIESC Journal, 2019, 70(S1): 15-22. |
[11] | WANG Jie, ZHANG Yin, GUO Jianjian, ZHAO Lili, ZHAO Yongxiang. γ-Valerolactone synthesis from levulinic acid hydrogenation over Ni/ZrO2-SiO2 catalyst [J]. CIESC Journal, 2018, 69(8): 3452-3459. |
[12] | SONG Rui, JIN Guangyuan, CUI Zhengwei, SONG Chunfang, CHEN Haiying. Dielectric properties of mixed materials in transesterification reaction system [J]. CIESC Journal, 2018, 69(8): 3670-3677. |
[13] | YUE Dongmin, ZHANG Qianzhi, SUN De, LI Bingbing, MAO Qinye, PENG Congkang. Preparation and properties of PVA/SO42--AAO catalytic-pervaporation difunctional membrane for ethyl acetate synthesis [J]. CIESC Journal, 2018, 69(6): 2775-2781. |
[14] | LI Xidu, XIE Xinling, ZHANG Youquan, JU Quanliang. Cyclohexane assisting preparation of starch esterification in supercritical CO2 [J]. CIESC Journal, 2017, 68(6): 2526-2534. |
[15] | ZHANG Yuanzhuo, WANG Songlin, XIAO Zhongliang, CHEN Tong, WANG Gongying. Effect of silanol content in silica support on catalytic performance of silica-anchored organotin catalyst for transesterification [J]. CIESC Journal, 2017, 68(5): 1892-1898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||