1 |
Ikuhara Y H, Gao X, Fisher C A J, et al. Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4[J]. Journal of Materials Chemistry A, 2017, 5(19): 9329-9338.
|
2 |
Satyavani T V S L, Srinivas Kumar A, Subba Rao P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 178-188.
|
3 |
Yu F, Zhang L L, Li Y C, et al. Mechanism studies of LiFePO4 cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction[J]. RSC Adv., 2014, 4(97): 54576-54602.
|
4 |
Eftekhari A. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017, 343: 395-411.
|
5 |
Aravindan V, Gnanaraj J, Lee Y S, et al. LiMnPO4—a next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518.
|
6 |
Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+ / Fe2+ redox couple in iron phosphates[J]. Journal of the Electrochemical Society, 1997, 144(5): 1609-1613.
|
7 |
Bramnik N N, Nikolowski K, Baehtz C, et al. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4[J]. Chemistry of Materials, 2007, 19(4): 908-915.
|
8 |
Hu M, Pang X L, Zhou Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242.
|
9 |
Örnek A. An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: nickel oxide surface modification with excellent core-shell principle[J]. Journal of Power Sources, 2017, 356: 1-11.
|
10 |
Wu J Y, Tsai C J. Qualitative modeling of the electrolyte oxidation in long-term cycling of LiCoPO4 for high-voltage lithium-ion batteries[J]. Electrochimica Acta, 2021, 368: 137585.
|
11 |
Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 3(4): 178.
|
12 |
Ludwig J, Marino C, Haering D, et al. Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries[J]. RSC Advances, 2016, 6(86): 82984-82994.
|
13 |
Zambonino M C, Quizhpe E M, Jaramillo F E, et al. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications[J]. International Journal of Molecular Sciences, 2021, 22(3): 989.
|
14 |
Shanmukaraj D, Murugan R. Synthesis and characterization of LiNiyCo1-yPO4 (y=0—1) cathode materials for lithium secondary batteries[J]. Ionics, 2004, 10(1/2): 88-92.
|
15 |
Truong Q D, Devaraju M K, Sasaki Y, et al. Relocation of cobalt ions in electrochemically delithiated LiCoPO4 cathode materials[J]. Chemistry of Materials, 2014, 26(9): 2770-2773.
|
16 |
Boulineau A, Gutel T. Revealing electrochemically induced antisite defects in LiCoPO4: evolution upon cycling[J]. Chemistry of Materials, 2015, 27(3): 802-807.
|
17 |
Wolfenstine J, Lee U, Poese B, et al. Effect of oxygen partial pressure on the discharge capacity of LiCoPO4[J]. Journal of Power Sources, 2005, 144(1): 226-230.
|
18 |
Xie J, Imanishi N, Zhang T, et al. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering[J]. Journal of Power Sources, 2009, 192(2): 689-692.
|
19 |
Wu X C, Meledina M, Tempel H, et al. Morphology-controllable synthesis of LiCoPO4 and its influence on electrochemical performance for high-voltage lithium ion batteries[J]. Journal of Power Sources, 2020, 450: 227726.
|
20 |
Li G H, Azuma H, Tohda M. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters, 2002, 5(6): A135.
|
21 |
Maeyoshi Y, Miyamoto S, Noda Y, et al. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method[J]. Journal of Power Sources, 2017, 337: 92-99.
|
22 |
Sreedeep S, Aravindan V. Fabrication of 4.7 V class “rocking-chair” type Li-ion cells with carbon-coated LiCoPO4 as cathode and graphite anode[J]. Materials Letters, 2021, 291: 129609.
|
23 |
Markevich E, Sharabi R, Haik O, et al. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines[J]. Journal of Power Sources, 2011, 196(15): 6433-6439.
|
24 |
Allen J L, Jow T R, Wolfenstine J. Improved cycle life of Fe-substituted LiCoPO4[J]. Journal of Power Sources, 2011, 196(20): 8656-8661.
|
25 |
Wolfenstine J. Electrical conductivity of doped LiCoPO4[J]. Journal of Power Sources, 2006, 158(2): 1431-1435.
|
26 |
Wu X C, Lin Y M, Ji Y, et al. Corrrection to insights into the enhanced catalytic activity of Fe-doped LiCoPO4 for the oxygen evolution reaction[J]. ACS Applied Energy Materials, 2020, 3(4): 4088.
|
27 |
Wu B R, Xu H L, Mu D B, et al. Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 304: 181-188.
|
28 |
Kreder K J, Assat G, Manthiram A. Aliovalent substitution of V3+ for Co2+ in LiCoPO4 by a low-temperature microwave-assisted solvothermal process[J]. Chemistry of Materials, 2016, 28(6): 1847-1853.
|
29 |
Wang Y M, Wang Y J, Liu X Y, et al. Solvothermal synthesis of LiFe1/3Mn1/3Co1/3PO4 solid solution as lithium storage cathode materials[J]. RSC Advances, 2017, 7(24): 14354-14359.
|
30 |
Wu X C, Meledina M, Barthel J, et al. Investigation of the Li-Co antisite exchange in Fe-substituted LiCoPO4 cathode for high-voltage lithium ion batteries[J]. Energy Storage Materials, 2019, 22: 138-146.
|