CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6380-6387.DOI: 10.11949/0438-1157.20211076
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shengrui CUI1(),Lintao DONG1,Yongcheng JIN1(
),Lan XIANG2(
)
Received:
2021-08-02
Revised:
2021-10-04
Online:
2021-12-22
Published:
2021-12-05
Contact:
Yongcheng JIN,Lan XIANG
通讯作者:
金永成,向兰
作者简介:
崔声睿(1996—),男,硕士研究生,基金资助:
CLC Number:
Shengrui CUI, Lintao DONG, Yongcheng JIN, Lan XIANG. Studies on the performance of high voltage LiCoPO4 cathode materials[J]. CIESC Journal, 2021, 72(12): 6380-6387.
崔声睿, 董林涛, 金永成, 向兰. 高电压磷酸钴锂正极材料性能调控研究[J]. 化工学报, 2021, 72(12): 6380-6387.
样品 | M2 | M1 | 晶胞参数 | ||||
---|---|---|---|---|---|---|---|
Co1 | Li2 | Li1 | Co2 | a | b | c | |
LCP-2.3 | 0.956 | 0.044 | 0.956 | 0.044 | 10.2088 | 5.9273 | 4.7039 |
LCFP-2.3 | 0.871 | 0.029 | 0.971 | 0.029 | 10.2113 | 5.9289 | 4.7038 |
LCFP-3.0 | 0.875 | 0.025 | 0.975 | 0.025 | 10.2142 | 5.9326 | 4.7041 |
LCMP-2.3 | 0.880 | 0.020 | 0.980 | 0.020 | 10.2317 | 5.9453 | 4.7068 |
LCMP-3.0 | 0.879 | 0.021 | 0.979 | 0.016 | 10.2299 | 5.9447 | 4.7071 |
LCMFP-2.3 | 0.882 | 0.018 | 0.982 | 0.018 | 10.2203 | 5.9351 | 4.7052 |
Table 1 The lattice parameters of LiCo1-x-yMnxFeyPO4/C composite material
样品 | M2 | M1 | 晶胞参数 | ||||
---|---|---|---|---|---|---|---|
Co1 | Li2 | Li1 | Co2 | a | b | c | |
LCP-2.3 | 0.956 | 0.044 | 0.956 | 0.044 | 10.2088 | 5.9273 | 4.7039 |
LCFP-2.3 | 0.871 | 0.029 | 0.971 | 0.029 | 10.2113 | 5.9289 | 4.7038 |
LCFP-3.0 | 0.875 | 0.025 | 0.975 | 0.025 | 10.2142 | 5.9326 | 4.7041 |
LCMP-2.3 | 0.880 | 0.020 | 0.980 | 0.020 | 10.2317 | 5.9453 | 4.7068 |
LCMP-3.0 | 0.879 | 0.021 | 0.979 | 0.016 | 10.2299 | 5.9447 | 4.7071 |
LCMFP-2.3 | 0.882 | 0.018 | 0.982 | 0.018 | 10.2203 | 5.9351 | 4.7052 |
1 | Ikuhara Y H, Gao X, Fisher C A J, et al. Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4[J]. Journal of Materials Chemistry A, 2017, 5(19): 9329-9338. |
2 | Satyavani T V S L, Srinivas Kumar A, Subba Rao P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 178-188. |
3 | Yu F, Zhang L L, Li Y C, et al. Mechanism studies of LiFePO4 cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction[J]. RSC Adv., 2014, 4(97): 54576-54602. |
4 | Eftekhari A. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017, 343: 395-411. |
5 | Aravindan V, Gnanaraj J, Lee Y S, et al. LiMnPO4—a next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518. |
6 | Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+ / Fe2+ redox couple in iron phosphates[J]. Journal of the Electrochemical Society, 1997, 144(5): 1609-1613. |
7 | Bramnik N N, Nikolowski K, Baehtz C, et al. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4[J]. Chemistry of Materials, 2007, 19(4): 908-915. |
8 | Hu M, Pang X L, Zhou Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. |
9 | Örnek A. An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: nickel oxide surface modification with excellent core-shell principle[J]. Journal of Power Sources, 2017, 356: 1-11. |
10 | Wu J Y, Tsai C J. Qualitative modeling of the electrolyte oxidation in long-term cycling of LiCoPO4 for high-voltage lithium-ion batteries[J]. Electrochimica Acta, 2021, 368: 137585. |
11 | Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 3(4): 178. |
12 | Ludwig J, Marino C, Haering D, et al. Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries[J]. RSC Advances, 2016, 6(86): 82984-82994. |
13 | Zambonino M C, Quizhpe E M, Jaramillo F E, et al. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications[J]. International Journal of Molecular Sciences, 2021, 22(3): 989. |
14 | Shanmukaraj D, Murugan R. Synthesis and characterization of LiNiyCo1-yPO4 (y=0—1) cathode materials for lithium secondary batteries[J]. Ionics, 2004, 10(1/2): 88-92. |
15 | Truong Q D, Devaraju M K, Sasaki Y, et al. Relocation of cobalt ions in electrochemically delithiated LiCoPO4 cathode materials[J]. Chemistry of Materials, 2014, 26(9): 2770-2773. |
16 | Boulineau A, Gutel T. Revealing electrochemically induced antisite defects in LiCoPO4: evolution upon cycling[J]. Chemistry of Materials, 2015, 27(3): 802-807. |
17 | Wolfenstine J, Lee U, Poese B, et al. Effect of oxygen partial pressure on the discharge capacity of LiCoPO4[J]. Journal of Power Sources, 2005, 144(1): 226-230. |
18 | Xie J, Imanishi N, Zhang T, et al. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering[J]. Journal of Power Sources, 2009, 192(2): 689-692. |
19 | Wu X C, Meledina M, Tempel H, et al. Morphology-controllable synthesis of LiCoPO4 and its influence on electrochemical performance for high-voltage lithium ion batteries[J]. Journal of Power Sources, 2020, 450: 227726. |
20 | Li G H, Azuma H, Tohda M. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters, 2002, 5(6): A135. |
21 | Maeyoshi Y, Miyamoto S, Noda Y, et al. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method[J]. Journal of Power Sources, 2017, 337: 92-99. |
22 | Sreedeep S, Aravindan V. Fabrication of 4.7 V class “rocking-chair” type Li-ion cells with carbon-coated LiCoPO4 as cathode and graphite anode[J]. Materials Letters, 2021, 291: 129609. |
23 | Markevich E, Sharabi R, Haik O, et al. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines[J]. Journal of Power Sources, 2011, 196(15): 6433-6439. |
24 | Allen J L, Jow T R, Wolfenstine J. Improved cycle life of Fe-substituted LiCoPO4[J]. Journal of Power Sources, 2011, 196(20): 8656-8661. |
25 | Wolfenstine J. Electrical conductivity of doped LiCoPO4[J]. Journal of Power Sources, 2006, 158(2): 1431-1435. |
26 | Wu X C, Lin Y M, Ji Y, et al. Corrrection to insights into the enhanced catalytic activity of Fe-doped LiCoPO4 for the oxygen evolution reaction[J]. ACS Applied Energy Materials, 2020, 3(4): 4088. |
27 | Wu B R, Xu H L, Mu D B, et al. Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 304: 181-188. |
28 | Kreder K J, Assat G, Manthiram A. Aliovalent substitution of V3+ for Co2+ in LiCoPO4 by a low-temperature microwave-assisted solvothermal process[J]. Chemistry of Materials, 2016, 28(6): 1847-1853. |
29 | Wang Y M, Wang Y J, Liu X Y, et al. Solvothermal synthesis of LiFe1/3Mn1/3Co1/3PO4 solid solution as lithium storage cathode materials[J]. RSC Advances, 2017, 7(24): 14354-14359. |
30 | Wu X C, Meledina M, Barthel J, et al. Investigation of the Li-Co antisite exchange in Fe-substituted LiCoPO4 cathode for high-voltage lithium ion batteries[J]. Energy Storage Materials, 2019, 22: 138-146. |
[1] | LUO Jun, WANG Lin, HUANG Qin, REN Siying, YU Xudong, ZENG Ying. Phase equilibria for ternary system CsCl-PEG8000-H2O at 288.2, 298.2 and 308.2 K [J]. CIESC Journal, 2021, 72(6): 3140-3148. |
[2] | Shuai HE, Feng GUO, Guojun KANG, Jian YU, Xuefeng REN, Guangwen XU. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943. |
[3] | Xudong YU, Qin HUANG, Lin WANG, Maolan LI, Hong ZHENG, Ying ZENG. Measurements and simulation for ternary system KCl-PEG4000-H2O at 288, 298 and 308 K [J]. CIESC Journal, 2019, 70(3): 830-839. |
[4] | OUYANG Bo, KONG Ming, QIAN Chao, CHEN Xinzhi. Measurement and correlation of solubility of diphenyl sulfoxide in several solvents [J]. CIESC Journal, 2018, 69(4): 1307-1314. |
[5] | YAN Shenghu,KANG Lin,ZHANG Yue,LIU Jianwu,SHEN Jiefa. Improvement of synthesizing p-tolylmagnesium chloride [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2977-2981. |
[6] | ZHANG Bin, WANG Xin, HUANG Qihui, JI Guangbin. Structure and magnetic properties of organiccoated Co microspheres prepared by solvothermal method [J]. CIESC Journal, 2012, 63(2): 634-639. |
[7] | Lü Wei,JIANG Jianchun,XU Junming. Technology of recovering urea from urea inclusion compounds producted in the separation of fatty acids using urea complexation [J]. Chemical Industry and Engineering Progree, 2012, 31(01 ): 201-207. |
[8] | LI Guangci,LIU Yunqi,LIU Di,LIU Lihua,LIU Chenguang. Hydrothermal/solvothermal synthesis and potential catalytic application of nanoscale boehmite with different morphologies [J]. , 2010, 29(7): 1215-. |
[9] | GE Jun1,2,GUO Longde1,GUO Zhihui1,SHI Bin1,ZHANG Jianfang1. Shenhua coal swelling with solvents and swelling promoters [J]. , 2010, 29(10): 1885-. |
[10] | PANG Jianyuan, LIU Guowei, MA Peisheng, FANG Yue. Measurement and Correlation of Solubility of Ethyl Nitritein Mixed Solvent [J]. , 2000, 8(3): 251-254. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 463
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||