CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2790-2805.DOI: 10.11949/0438-1157.20220325
• Reviews and monographs • Previous Articles Next Articles
Xinzhe ZHANG1(),Wentao SUN2,Bo LYU1(),Chun LI1,2()
Received:
2022-03-02
Revised:
2022-04-08
Online:
2022-08-01
Published:
2022-07-05
Contact:
Bo LYU,Chun LI
通讯作者:
吕波,李春
作者简介:
张昕哲(1997—),男,硕士研究生,基金资助:
CLC Number:
Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing[J]. CIESC Journal, 2022, 73(7): 2790-2805.
张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805.
种类 | 辅因子 | 电子供体 | 反应类型 | 举例 | 文献 |
---|---|---|---|---|---|
A | FAD | NAD(P)H | 羟基化反应 | 对羟基苯酸3-羟化酶 | [ |
磺化氧化反应 | MICAL | [ | |||
B | FAD | NAD(P)H | 拜尔-维立格氧化反应 | 环己酮单加氧酶 | [ |
杂原子氧化反应 | 二甲基苯胺单加氧酶 | [ | |||
N-羟基化反应 | L-鸟氨酸单加氧酶 | [ | |||
氧化脱羧反应 | 吲哚-3-丙酮酸单加氧酶 | [ | |||
C | FMN | FMNH2 | 光化学反应 | 烷醛单加氧酶 | [ |
拜尔-维立格氧化反应 | 二酮环烷单加氧酶 | [ | |||
环氧化反应 | 二酮环烷单加氧酶 | [ | |||
脱硫反应, 磺化氧化反应 | 烷烃磺酸盐单加氧酶 | [ | |||
羟基化反应 | 长链烷烃单氧酶 | [ | |||
D | FAD/FMN | FADH2/FMNH2 | 羟基化反应 | 对羟基苯乙酸3-羟化酶 | [ |
N-羟基化反应 | KijD3 糖 N-氧化酶 | [ | |||
E | FAD | FADH2 | 环氧化反应 | 苯乙烯单加氧酶 | [ |
F | FAD | FADH2 | 卤代反应 | 色氨酸7-卤化酶 | [ |
G | FAD | 底物 | 氧化脱羧反应 | 色氨酸2-单加氧酶 | [ |
H | FMN | 底物 | 氧化脱羧反应 | 乳酸2-单加氧酶 | [ |
氧化脱硝反应 | 硝酸单加氧酶 | [ |
Table 1 Main classes of flavin-dependent monooxygenases[11]
种类 | 辅因子 | 电子供体 | 反应类型 | 举例 | 文献 |
---|---|---|---|---|---|
A | FAD | NAD(P)H | 羟基化反应 | 对羟基苯酸3-羟化酶 | [ |
磺化氧化反应 | MICAL | [ | |||
B | FAD | NAD(P)H | 拜尔-维立格氧化反应 | 环己酮单加氧酶 | [ |
杂原子氧化反应 | 二甲基苯胺单加氧酶 | [ | |||
N-羟基化反应 | L-鸟氨酸单加氧酶 | [ | |||
氧化脱羧反应 | 吲哚-3-丙酮酸单加氧酶 | [ | |||
C | FMN | FMNH2 | 光化学反应 | 烷醛单加氧酶 | [ |
拜尔-维立格氧化反应 | 二酮环烷单加氧酶 | [ | |||
环氧化反应 | 二酮环烷单加氧酶 | [ | |||
脱硫反应, 磺化氧化反应 | 烷烃磺酸盐单加氧酶 | [ | |||
羟基化反应 | 长链烷烃单氧酶 | [ | |||
D | FAD/FMN | FADH2/FMNH2 | 羟基化反应 | 对羟基苯乙酸3-羟化酶 | [ |
N-羟基化反应 | KijD3 糖 N-氧化酶 | [ | |||
E | FAD | FADH2 | 环氧化反应 | 苯乙烯单加氧酶 | [ |
F | FAD | FADH2 | 卤代反应 | 色氨酸7-卤化酶 | [ |
G | FAD | 底物 | 氧化脱羧反应 | 色氨酸2-单加氧酶 | [ |
H | FMN | 底物 | 氧化脱羧反应 | 乳酸2-单加氧酶 | [ |
氧化脱硝反应 | 硝酸单加氧酶 | [ |
氧化酶 | 来源 | 种类 | 反应底物 | 反应产物 | 文献 |
---|---|---|---|---|---|
CYP71AV9 | Cynara cardunculus | P450 | 吉玛烯A | 吉玛烯酸 | [ |
CYP71BL5 | Cynara cardunculus | P450 | 吉玛烯酸 | 6-羟基吉玛烯酸 | [ |
CYP76AJ1 | Persicaria hydropiper | P450 | 补身醇 | 水蓼二醛 | [ |
CYP701A26 | Zea mays | P450 | ent-贝壳杉烯 | ent-贝壳杉烯酸 | [ |
CYP716A179 | Glycyrrhiza uralensis | P450 | 羽扇豆醇 | 桦木酸 | [ |
β-香树脂醇 | 齐墩果酸 | [ | |||
α-香树脂醇 | 熊果酸 | [ | |||
CYP716A175 | Malus pumila | P450 | 日耳曼醇 | 模绕酸 | [ |
CYP716A141 | Platycodon grandiflorus | P450 | β-香树脂醇 | 马尼拉二醇 | [ |
CYP716E26 | Solanum lycopersicum | P450 | β-香树脂醇 | 曼陀罗萜二醇 | [ |
CYP716C49 | Crataegus pinnatifida | P450 | 齐墩果酸 | 山楂酸 | [ |
熊果酸 | 科罗索酸 | [ | |||
桦木酸 | 麦珠子酸 | [ | |||
CYP714E19 | Centella asiatica | P450 | 齐墩果酸 | 丝石竹酸 | [ |
CYP72A68 | Medicago truncatula | P450 | 齐墩果酸 | 常春藤素 | [ |
CYP72A67 | Medicago truncatula | P450 | 常春藤素 | 贝萼皂苷元 | [ |
DBOX | Papaver somniferum | 黄素依赖型氧化酶 | 二氢血根碱 | 血根碱 | [ |
TPOX | Papaver somniferum | 黄素依赖型氧化酶 | 四氢罂粟碱 | 罂粟碱 | [ |
MAO-N | 黄素依赖型氧化酶 | (±)-毒芹碱 | (R)-毒芹碱 | [ | |
(±)-胡秃子碱 | (R)-胡秃子碱 | [ | |||
(±)-细茜花碱 | (R)-细茜花碱 | [ | |||
FsDAAO | Aspergillus niger | 黄素依赖型氧化酶 | 四氢异喹啉 | (S)-四氢异喹啉 | [ |
HypC | Aspergillus nidulans | 蒽酮氧化酶 | 降散盘衣酸蒽酮 | 降散盘衣酸 | [ |
TpcL | Aspergillus fumigatus | 蒽酮氧化酶 | 大黄素蒽酮 | 大黄素 | [ |
Trametes pubescens漆酶 | Trametes pubescens | 漆酶 | 葡萄糖 | 葡萄糖醛酸 | [ |
桃柘酚 | 二聚桃柘酚 | [ | |||
CYP106A1 | Bacillus megaterium | P450 | 强的松醇 | 15β-羟基强的松 | [ |
地塞米松 | 11-羰基地塞米松 | [ |
Table 2 Examples of natural product oxidase catalysis
氧化酶 | 来源 | 种类 | 反应底物 | 反应产物 | 文献 |
---|---|---|---|---|---|
CYP71AV9 | Cynara cardunculus | P450 | 吉玛烯A | 吉玛烯酸 | [ |
CYP71BL5 | Cynara cardunculus | P450 | 吉玛烯酸 | 6-羟基吉玛烯酸 | [ |
CYP76AJ1 | Persicaria hydropiper | P450 | 补身醇 | 水蓼二醛 | [ |
CYP701A26 | Zea mays | P450 | ent-贝壳杉烯 | ent-贝壳杉烯酸 | [ |
CYP716A179 | Glycyrrhiza uralensis | P450 | 羽扇豆醇 | 桦木酸 | [ |
β-香树脂醇 | 齐墩果酸 | [ | |||
α-香树脂醇 | 熊果酸 | [ | |||
CYP716A175 | Malus pumila | P450 | 日耳曼醇 | 模绕酸 | [ |
CYP716A141 | Platycodon grandiflorus | P450 | β-香树脂醇 | 马尼拉二醇 | [ |
CYP716E26 | Solanum lycopersicum | P450 | β-香树脂醇 | 曼陀罗萜二醇 | [ |
CYP716C49 | Crataegus pinnatifida | P450 | 齐墩果酸 | 山楂酸 | [ |
熊果酸 | 科罗索酸 | [ | |||
桦木酸 | 麦珠子酸 | [ | |||
CYP714E19 | Centella asiatica | P450 | 齐墩果酸 | 丝石竹酸 | [ |
CYP72A68 | Medicago truncatula | P450 | 齐墩果酸 | 常春藤素 | [ |
CYP72A67 | Medicago truncatula | P450 | 常春藤素 | 贝萼皂苷元 | [ |
DBOX | Papaver somniferum | 黄素依赖型氧化酶 | 二氢血根碱 | 血根碱 | [ |
TPOX | Papaver somniferum | 黄素依赖型氧化酶 | 四氢罂粟碱 | 罂粟碱 | [ |
MAO-N | 黄素依赖型氧化酶 | (±)-毒芹碱 | (R)-毒芹碱 | [ | |
(±)-胡秃子碱 | (R)-胡秃子碱 | [ | |||
(±)-细茜花碱 | (R)-细茜花碱 | [ | |||
FsDAAO | Aspergillus niger | 黄素依赖型氧化酶 | 四氢异喹啉 | (S)-四氢异喹啉 | [ |
HypC | Aspergillus nidulans | 蒽酮氧化酶 | 降散盘衣酸蒽酮 | 降散盘衣酸 | [ |
TpcL | Aspergillus fumigatus | 蒽酮氧化酶 | 大黄素蒽酮 | 大黄素 | [ |
Trametes pubescens漆酶 | Trametes pubescens | 漆酶 | 葡萄糖 | 葡萄糖醛酸 | [ |
桃柘酚 | 二聚桃柘酚 | [ | |||
CYP106A1 | Bacillus megaterium | P450 | 强的松醇 | 15β-羟基强的松 | [ |
地塞米松 | 11-羰基地塞米松 | [ |
1 | Newman D J, Cragg G M. Natural products as sources of new drugs over the last 25 years[J]. Journal of Natural Products, 2007, 70(3): 461-477. |
2 | Rishton G M. Natural products as a robust source of new drugs and drug leads: past successes and present day issues[J]. The American Journal of Cardiology, 2008, 101(10): S43-S49. |
3 | Miettinen K, Pollier J, Buyst D, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis [J]. Nature Communications, 2017, 8: 14153. |
4 | Seki H, Sawai S, Ohyama K, et al. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J]. The Plant Cell, 2011, 23(11): 4112-4123. |
5 | 范炳芝, 王一鑫, 廉霄甜, 等. 三萜类化合物抗病毒的构效关系及其作用机制研究进展[J]. 化工学报, 2020, 71(9): 4071-4101. |
Fan B Z, Wang Y X, Lian X T, et al. Structure-activity relationships and mechanisms of triterpenoids against virus[J]. CIESC Journal, 2020, 71(9): 4071-4101. | |
6 | Marsafari M, Samizadeh H, Rabiei B, et al. Biotechnological production of flavonoids: an update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors[J]. Biotechnology Journal, 2020, 15(8): 1900432. |
7 | Wani M C, Wall M E. Plant antitumor agents(Ⅱ): Structure of two new alkaloids from Camptotheca acuminata [J]. The Journal of Organic Chemistry, 1969, 34(5): 1364-1367. |
8 | Meunier B, de Visser S P, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes[J]. Chemical Reviews, 2004, 104(9): 3947-3980. |
9 | van Berkel W J H, Kamerbeek N M, Fraaije M W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts[J]. Journal of Biotechnology, 2006, 124(4): 670-689. |
10 | Rolff M, Schottenheim J, Decker H, et al. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme[J]. Chemical Society Reviews, 2011, 40(7): 4077-4098. |
11 | Huijbers M M E, Montersino S, Westphal A H, et al. Flavin dependent monooxygenases[J]. Archives of Biochemistry and Biophysics, 2014, 544: 2-17. |
12 | Chordia S, Narasimhan S, Lucini Paioni A, et al. In vivo assembly of artificial metalloenzymes and application in whole-cell biocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(11): 5913-5920. |
13 | 孙文涛, 李春. 微生物合成植物天然产物的细胞工厂设计与构建[J]. 化工进展, 2021, 40(3): 1202-1214. |
Sun W T, Li C. Design and construction of microbial cell factory for biosynthesis of plant natural products[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1202-1214. | |
14 | 薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报, 2019, 70(10): 3825-3835. |
Xue H J, Wang Y, Li C. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal, 2019, 70(10): 3825-3835. | |
15 | Sun W T, Qin L, Xue H J, et al. Novel trends for producing plant triterpenoids in yeast[J]. Critical Reviews in Biotechnology, 2019, 39(5): 618-632. |
16 | 朱明, 王彩霞, 李春. 工程化酿酒酵母合成植物三萜类化合物[J]. 化工学报, 2015, 66(9): 3350-3356. |
Zhu M, Wang C X, Li C. Engineered saccharomyces cerevisiae for biosynthesis of plant triterpenoids[J]. CIESC Journal, 2015, 66(9): 3350-3356. | |
17 | Karp F, Mihaliak C A, Harris J L, et al. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves[J]. Archives of Biochemistry and Biophysics, 1990, 276(1): 219-226. |
18 | Covello P S, Teoh K H, Polichuk D R, et al. Functional genomics and the biosynthesis of artemisinin[J]. Phytochemistry, 2007, 68(14): 1864-1871. |
19 | Ro D K, Bohlmann J. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1)[J]. Phytochemistry, 2006, 67(15): 1572-1578. |
20 | 周蕾, 刘卓刚. 熊果酸抗肿瘤作用机制的研究进展[J]. 医药导报, 2011, 30(4): 490-494. |
Zhou L, Liu Z G. Research progress of ursolic acid's antitumor mechanism[J]. Herald of Medicine, 2011, 30(4): 490-494. | |
21 | 陈芳玲, 楼雅楠, 孔祥倩, 等. 三萜类化合物抗肿瘤及其作用机制的研究进展[J]. 中医药导报, 2018, 24(17): 45-49. |
Chen F L, Lou Y N, Kong X Q, et al. Research progress on antitumor effect and mechanisms of three terpenoids[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2018, 24(17): 45-49. | |
22 | 李诺楠, 李春. 糖基转移酶在三萜皂苷合成中的应用[J]. 化工学报, 2019, 70(10): 3869-3879. |
Li N N, Li C. Applications of glycosyltransferases in synthesis of triterpenoid saponins[J]. CIESC Journal, 2019, 70(10): 3869-3879. | |
23 | Nabavi S M, Šamec D, Tomczyk M, et al. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering[J]. Biotechnology Advances, 2020, 38: 107316. |
24 | Xie F, Lang Q Y, Zhou M, et al. The dietary flavonoid luteolin inhibits Aurora B kinase activity and blocks proliferation of cancer cells[J]. European Journal of Pharmaceutical Sciences, 2012, 46(5): 388-396. |
25 | 翟广玉, 马海英, 郜蕾. 槲皮素及其衍生物的抗肿瘤活性研究进展[J]. 化学试剂, 2015, 37(2): 97-103. |
Zhai G Y, Ma H Y, Gao L. Progress of antitumor activity of quercetin and derivatives[J]. Chemical Reagents, 2015, 37(2): 97-103. | |
26 | Akhlaghi M, Bandy B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury[J]. Journal of Molecular and Cellular Cardiology, 2009, 46(3): 309-317. |
27 | 冯甜, 王力彬, 周楠, 等. 根皮素的研究进展[J]. 转化医学杂志, 2017, 6(1): 42-46. |
Feng T, Wang L B, Zhou N, et al. Advance in studies on phloretin[J]. Translational Medicine Journal, 2017, 6(1): 42-46. | |
28 | 马琮鉴, 高健美, 孔浩, 等. 根皮苷药理作用研究进展[J]. 医药导报, 2020, 39(3): 360-364. |
Ma C J, Gao J M, Kong H, et al. Research progress of pharmacological effects of phlorizin[J]. Herald of Medicine, 2020, 39(3): 360-364. | |
29 | Schläger S, Dräger B. Exploiting plant alkaloids[J]. Current Opinion in Biotechnology, 2016, 37: 155-164. |
30 | Fraaije M W, Mattevi A. Flavoenzymes: diverse catalysts with recurrent features[J]. Trends in Biochemical Sciences, 2000, 25(3): 126-132. |
31 | Leys D, Scrutton N S. Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism[J]. Current Opinion in Structural Biology, 2016, 41: 19-26. |
32 | Piano V, Palfey B A, Mattevi A. Flavins as covalent catalysts: new mechanisms emerge[J]. Trends in Biochemical Sciences, 2017, 42(6): 457-469. |
33 | de Colibus L, Mattevi A. New frontiers in structural flavoenzymology[J]. Current Opinion in Structural Biology, 2006, 16(6): 722-728. |
34 | Chaiyen P, Fraaije M W, Mattevi A. The enigmatic reaction of flavins with oxygen[J]. Trends in Biochemical Sciences, 2012, 37(9): 373-380. |
35 | Ortiz-Maldonado M, Ballou D P, Massey V. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins[J]. Biochemistry, 1999, 38(25): 8124-8137. |
36 | Senn H M, Thiel S, Thiel W. Enzymatic hydroxylation in p-hydroxybenzoate hydroxylase: a case study for QM/MM molecular dynamics[J]. Journal of Chemical Theory and Computation, 2005, 1(3): 494-505. |
37 | Palfey B A, Moran G R, Entsch B, et al. Substrate recognition by “password” in p-hydroxybenzoate hydroxylase[J]. Biochemistry, 1999, 38(4): 1153-1158. |
38 | Massey V. Activation of molecular oxygen by flavins and flavoproteins[J]. Journal of Biological Chemistry, 1994, 269(36): 22459-22462. |
39 | Entsch B, van Berkel W J H. Structure and mechanism of para-hydroxybenzoate hydroxylase[J]. The FASEB Journal, 1995, 9(7): 476-483. |
40 | Esposito A, Ventura V, Petoukhov M V, et al. Human MICAL1: activation by the small GTPase Rab8 and small-angle X-ray scattering studies on the oligomerization state of MICAL1 and its complex with Rab8[J]. Protein Science, 2019, 28(1): 150-166. |
41 | Romero E, Castellanos J R G, Mattevi A, et al. Characterization and crystal structure of a robust cyclohexanone monooxygenase[J]. Angewandte Chemie International Edition, 2016, 55(51): 15852-15855. |
42 | Oae S, Mikami A, Matsuura T, et al. Comparison of sulfide oxygenation mechanism for liver microsomal FAD-containing monooxygenase with that for cytochrome P-450[J]. Biochemical and Biophysical Research Communications, 1985, 131(2): 567-573. |
43 | Pohlmann V, Marahiel M A. Delta-amino group hydroxylation of L-ornithine during coelichelin biosynthesis[J]. Organic & Biomolecular Chemistry, 2008, 6(10): 1843-1848. |
44 | Zhao Y D. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants[J]. Molecular Plant, 2012, 5(2): 334-338. |
45 | Tinikul R, Pitsawong W, Sucharitakul J, et al. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion[J]. Biochemistry, 2013, 52(39): 6834-6843. |
46 | Willetts A, Kelly D. Flavin-dependent redox transfers by the two-component diketocamphane monooxygenases of camphor-grown pseudomonas putida NCIMB 10007[J]. Microorganisms, 2016, 4(4): 38. |
47 | Hille R, Miller S, Palfey B. Handbook of Flavoproteins[M]. Berlin, Germany: De Gruyter, 2013. |
48 | Li L, Liu X Q, Yang W, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase[J]. Journal of Molecular Biology, 2008, 376(2): 453-465. |
49 | Sucharitakul J, Chaiyen P, Entsch B, et al. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from acinetobacter baumannii[J]. Journal of Biological Chemistry, 2006, 281(25): 17044-17053. |
50 | Bruender N A, Thoden J B, Holden H M. X-Ray structure of kijd3, a key enzyme involved in the biosynthesis of D-kijanose[J]. Biochemistry, 2010, 49(17): 3517-3524. |
51 | Kantz A, Chin F, Nallamothu N, et al. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase[J]. Archives of Biochemistry and Biophysics, 2005, 442(1): 102-116. |
52 | Yeh E, Blasiak L C, Koglin A, et al. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases[J]. Biochemistry, 2007, 46(5): 1284-1292. |
53 | Fitzpatrick P F. Oxidation of amines by flavoproteins[J]. Archives of Biochemistry and Biophysics, 2010, 493(1): 13-25. |
54 | Maeda-Yorita K, Aki K, Sagai H, et al. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme[J]. Biochimie, 1995, 77(7/8): 631-642. |
55 | Gadda G, Francis K. Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis[J]. Archives of Biochemistry and Biophysics, 2010, 493(1): 53-61. |
56 | Iacovino L G, Magnani F, Binda C. The structure of monoamine oxidases: past, present, and future[J]. Journal of Neural Transmission, 2018, 125(11): 1567-1579. |
57 | Batista V F, Galman J L, Pinto D C G A, et al. Monoamine oxidase: tunable activity for amine resolution and functionalization[J]. ACS Catalysis, 2018, 8(12): 11889-11907. |
58 | Duan J Q, Li B B, Qin Y C, et al. Recent progress in directed evolution of stereoselective monoamine oxidases[J]. Bioresources and Bioprocessing, 2019, 6: 37. |
59 | Haberska K, Vaz-Domínguez C, de Lacey A L, et al. Direct electron transfer reactions between human ceruloplasmin and electrodes[J]. Bioelectrochemistry, 2009, 76(1/2): 34-41. |
60 | Floris G, Medda R, Padiglia A, et al. The physiopathological significance of ceruloplasmin: a possible therapeutic approach[J]. Biochemical Pharmacology, 2000, 60(12): 1735-1741. |
61 | Fujieda N, Umakoshi K, Ochi Y, et al. Copper-oxygen dynamics in the tyrosinase mechanism[J]. Angewandte Chemie International Edition, 2020, 59(32): 13385-13390. |
62 | Marino S M, Fogal S, Bisaglia M, et al. Investigation of streptomyces antibioticus tyrosinase reactivity toward chlorophenols[J]. Archives of Biochemistry and Biophysics, 2011, 505(1): 67-74. |
63 | Muñoz-Muñoz J L, Berna J, García-Molina M D M, et al. Hydroxylation of p-substituted phenols by tyrosinase: further insight into the mechanism of tyrosinase activity[J]. Biochemical and Biophysical Research Communications, 2012, 424(2): 228-233. |
64 | Washington C, Maxwell J, Stevenson J, et al. Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one[J]. Archives of Biochemistry and Biophysics, 2015, 577/578: 24-34. |
65 | van Deurzen M P J, van Rantwijk F, Sheldon R A. Selective oxidations catalyzed by peroxidases[J]. Tetrahedron, 1997, 53(39): 13183-13220. |
66 | Hager L P, Lakner F J, Basavapathruni A. Chiral synthons via chloroperoxidase catalysis[J]. Journal of Molecular Catalysis B: Enzymatic, 1998, 5(1/2/3/4): 95-101. |
67 | Colonna S, Gaggero N, Richelmi C, et al. Recent biotechnological developments in the use of peroxidases[J]. Trends in Biotechnology, 1999, 17(4): 163-168. |
68 | Guengerich F P. Mechanisms of cytochrome P450-catalyzed oxidations[J]. ACS Catalysis, 2018, 8(12): 10964-10976. |
69 | Guengerich F P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity[J]. Chemical Research in Toxicology, 2001, 14(6): 611-650. |
70 | Coon M J. Cytochrome P450: nature's most versatile biological catalyst[J]. Annual Review of Pharmacology and Toxicology, 2005, 45: 1-25. |
71 | 蒋媛媛, 李盛英. 细胞色素P450酶在生物合成及有机合成中的催化功能及其应用[J]. 有机化学, 2018, 38(9): 2307-2323. |
Jiang Y Y, Li S Y. Catalytic function and application of cytochrome P450 enzymes in biosynthesis and organic synthesis[J]. Chinese Journal of Organic Chemistry, 2018, 38(9): 2307-2323. | |
72 | Nelson D R. Cytochrome P450 diversity in the tree of life[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2018, 1866(1): 141-154. |
73 | Matthews S, Belcher J D, Tee K L, et al. Catalytic determinants of alkene production by the cytochrome P450 peroxygenase OleTJE[J]. Journal of Biological Chemistry, 2017, 292(12): 5128-5143. |
74 | Roberts G A, Çelik A, Hunter D J B, et al. A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a[2Fe-2S]redox center[J]. Journal of Biological Chemistry, 2003, 278(49): 48914-48920. |
75 | Daiber A, Shoun H, Ullrich V. Nitric oxide reductase (P450nor) from fusarium oxysporum[J]. Journal of Inorganic Biochemistry, 2005, 99(1): 185-193. |
76 | Li Z, Jiang Y Y, Guengerich F P, et al. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications[J]. The Journal of Biological Chemistry, 2020, 295(3): 833-849. |
77 | Hannemann F, Bichet A, Ewen K M, et al. Cytochrome P450 systems—biological variations of electron transport chains[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2007, 1770(3): 330-344. |
78 | Dydio P, Key H M, Nazarenko A, et al. An artificial metalloenzyme with the kinetics of native enzymes[J]. Science, 2016, 354(6308): 102-106. |
79 | Eljounaidi K, Cankar K, Comino C, et al. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway[J]. Plant Science, 2014, 223: 59-68. |
80 | Henquet M G L, Prota N, van der Hooft J J J, et al. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes[J]. The Plant Journal, 2017, 90(6): 1052-1063. |
81 | Mao H J, Shen Q Q, Wang Q. CYP701A26 is characterized as an ent-kaurene oxidase with putative involvement in maize gibberellin biosynthesis[J]. Biotechnology Letters, 2017, 39(11): 1709-1716. |
82 | Tamura K, Seki H, Suzuki H, et al. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis [J]. Plant Cell Reports, 2017, 36(3): 437-445. |
83 | Ríos J L, Máñez S. New pharmacological opportunities for betulinic acid[J]. Planta Medica, 2018, 84(1): 8-19. |
84 | Wang W W, Chen K, Xia Y J, et al. The hepatoprotection by oleanolic acid preconditioning: focusing on PPARα activation[J]. PPAR Research, 2018, 2018: 3180396. |
85 | Tapondjou L A, Lontsi D, Sondengam B L, et al. In vivo anti-nociceptive and anti-inflammatory effect of the two triterpenes, ursolic acid and 23-hydroxyursolic acid, from Cussonia bancoensis [J]. Archives of Pharmacal Research, 2003, 26(2): 143-146. |
86 | Yasumoto S, Seki H, Shimizu Y, et al. Functional characterization of CYP716 family P450 enzymes in triterpenoid biosynthesis in tomato[J]. Frontiers in Plant Science, 2017, 8: 21. |
87 | Andre C M, Legay S, Deleruelle A, et al. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids[J]. New Phytologist, 2016, 211(4): 1279-1294. |
88 | Tamura K, Teranishi Y, Ueda S, et al. Cytochrome P450 monooxygenase CYP716A141 is a unique β-amyrin C-16β oxidase involved in triterpenoid saponin biosynthesis in platycodon grandiflorus[J]. Plant and Cell Physiology, 2017, 58(5): 874-884. |
89 | Yasumoto S, Fukushima E O, Seki H, et al. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes[J]. FEBS Letters, 2016, 590(4): 533-540. |
90 | Dai Z B, Liu Y, Sun Z T, et al. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories[J]. Metabolic Engineering, 2019, 51: 70-78. |
91 | Kim O T, Um Y, Jin M L, et al. A novel multifunctional C-23 oxidase, CYP714E19, is involved in asiaticoside biosynthesis[J]. Plant and Cell Physiology, 2018, 59(6): 1200-1213. |
92 | Zhang J S, Dai L H, Yang J G, et al. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii [J]. Plant and Cell Physiology, 2016, 57(5): 1000-1007. |
93 | Seki H, Ohyama K, Sawai S, et al. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J]. PNAS, 2008, 105(37): 14204-14209. |
94 | Tzin V, Snyder J H, Yang D S, et al. Integrated metabolomics identifies CYP72A67 and CYP72A68 oxidases in the biosynthesis of medicago truncatula oleanate sapogenins[J]. Metabolomics, 2019, 15(6): 1-20. |
95 | Hagel J M, Beaudoin G A W, Fossati E, et al. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis[J]. Journal of Biological Chemistry, 2012, 287(51): 42972-42983. |
96 | Ghislieri D, Green A P, Pontini M, et al. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products[J]. Journal of the American Chemical Society, 2013, 135(29): 10863-10869. |
97 | Ghislieri D, Houghton D, Green A P, et al. Monoamine oxidase (MAO-N) catalyzed deracemization of tetrahydro-β-carbolines: substrate dependent switch in enantioselectivity[J]. ACS Catalysis, 2013, 3(12): 2869-2872. |
98 | Xu N N, Ahuja E G, Janning P, et al. Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis[J]. Acta Crystallographica. Section D, Biological Crystallography, 2013, 69(Pt 8): 1403-1413. |
99 | Meng S, Han W, Zhao J, et al. A six-oxidase cascade for tandem C—H bond activation revealed by reconstitution of bicyclomycin biosynthesis[J]. Angewandte Chemie International Edition, 2018, 57(3): 719-723. |
100 | Ju S Y, Qian M X, Xu G, et al. Chemoenzymatic approach to (S)-1, 2, 3, 4-tetrahydroisoquinoline carboxylic acids employing D-amino acid oxidase[J]. Advanced Synthesis and Catalysis, 2019, 361(13): 3191-3199. |
101 | Couturier M, Bhalara H D, Chawrai S R, et al. Substrate flexibility of the flavin-dependent dihydropyrrole oxidases PigB and HapB involved in antibiotic prodigiosin biosynthesis[J]. ChemBioChem, 2020, 21(4): 523-530. |
102 | Pandey R P, Parajuli P, Koffas M A G, et al. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology[J]. Biotechnology Advances, 2016, 34(5): 634-662. |
103 | Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology, 2001, 126(2): 485-493. |
104 | Choi K Y, Kim T J, Koh S K, et al. A-ring ortho-specific monohydroxylation of daidzein by cytochrome P450s of nocardia farcinica IFM10152[J]. Biotechnology Journal, 2009, 4(11): 1586-1595. |
105 | Roh C, Choi K Y, Pandey B P, et al. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 59(4): 248-253. |
106 | Pandey B P, Lee N, Choi K Y, et al. Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids[J]. Enzyme and Microbial Technology, 2011, 48(4/5): 386-392. |
107 | Ehrlich K C, Li P, Scharfenstein L, et al. HypC, the anthrone oxidase involved in aflatoxin biosynthesis[J]. Applied and Environmental Microbiology, 2010, 76(10): 3374-3377. |
108 | Throckmorton K, Lim F Y, Kontoyiannis D P, et al. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus [J]. Environmental Microbiology, 2016, 18(1): 246-259. |
109 | Marzorati M, Danieli B, Haltrich D, et al. Selective laccase-mediated oxidation of sugars derivatives[J]. Green Chemistry, 2005, 7(5): 310. |
110 | Baratto L, Candido A, Marzorati M, et al. Laccase-mediated oxidation of natural glycosides[J]. Journal of Molecular Catalysis B: Enzymatic, 2006, 39(1/2/3/4): 3-8. |
111 | Ncanana S, Baratto L, Roncaglia L, et al. Laccase-mediated oxidation of totarol[J]. Advanced Synthesis & Catalysis, 2007, 349(8/9): 1507-1513. |
112 | Nes W D. Biosynthesis of cholesterol and other sterols[J]. Chemical Reviews, 2011, 111(10): 6423-6451. |
113 | Kiss F M, Khatri Y, Zapp J, et al. Identification of new substrates for the CYP106A1-mediated 11-oxidation and investigation of the reaction mechanism[J]. FEBS Letters, 2015, 589(18): 2320-2326. |
114 | 姜恬, 冯旭东, 李岩, 等. 底物特异性的生物催化与酶设计改造[J]. 化工进展, 2019, 38(1): 606-614. |
Jiang T, Feng X D, Li Y, et al. The biocatalysis and enzyme modification of substrate specificity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 606-614. | |
115 | Zhu M, Wang C X, Sun W T, et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45: 43-50. |
116 | Kim J E, Son S H, Oh S S, et al. Pairing of orthogonal chaperones with a cytochrome P450 enhances terpene synthesis in Saccharomyces cerevisiae [J]. Biotechnology Journal, 2022, 17(3): 2000452. |
117 | Mellor S B, Nielsen A Z, Burow M, et al. Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis[J]. ACS Chemical Biology, 2016, 11(7): 1862-1869. |
118 | Wang X, Pereira J H, Tsutakawa S, et al. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450[J]. Metabolic Engineering, 2021, 64: 41-51. |
119 | Sun W T, Xue H J, Liu H, et al. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis[J]. ACS Catalysis, 2020, 10(7): 4253-4260. |
[1] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[2] | WANG Yali,FU Yousi,CHEN Junhong,HUANG Jiacheng,LIAO Langxing,ZHANG Yonghui,FANG Baishan. Enzyme engineering: from artificial design to artificial intelligence [J]. CIESC Journal, 2021, 72(7): 3590-3600. |
[3] | YU Zhihui, HUANG Pengfei, WANG Xiayan. Direct electrochemistry of immobilized glucose oxidase on amorphous mesoporous zirconium phosphate [J]. CIESC Journal, 2016, 67(5): 2161-2168. |
[4] | RAO Chao, DONG Yihui, ZHUANG Wei, WU Xinbing, HONG Qiliang, LIU Chang, LU Xiaohua. Regulate properties of glucose oxidase biosensors through pore sizes of TiO2 nanotube arrays [J]. CIESC Journal, 2016, 67(10): 4324-4333. |
[5] | WU Xinbing, MENG Meng, ZHUANG Wei, LÜ Linghong, LU Xiaohua. Direct electrochemistry of glucose oxidase immobilized on mesoporous TiO2 [J]. CIESC Journal, 2014, 65(5): 1777-1783. |
[6] | GONG Rui,Lü Shenghua,HOU Mingming. Enzymatic synthesis and characterization of copolymer of resorcinol and 3,5-dihydroxy benzoic acid [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 412-416. |
[7] | PENG Yiqiang,LIU Peng,DEN Feng,LIU Yu. Enzyme active center essential groups composition and inhibitory mechanism research of polyphenol oxidase from potato [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 406-411. |
[8] | BAO Mutai,PENG Jie,CHEN Qingguo. Research progress of biodegradation of polyacrylamide by microorganisms [J]. , 2011, 30(9): 2080-. |
[9] | SUN Yan,YANG Hailin,WANG Wu. High-throughput screening methods for selecting cholesterol oxidase with improved thermal stability [J]. , 2011, 30(3): 612-. |
[10] | CHEN Min, YAO Shanjing, ZHANG Hong, LIANG Xinle. Purification and Characterization of a Versatile Peroxidase from Edible Mushroom Pleurotus eryngii [J]. , 2010, 18(5): 824-829. |
[11] | SUN Yan,WANG Changcheng,ZHANG Ling,YANG Hailin,WANG Wu. Exponential fed-batch culture strategy for the production of cholesterol oxidase in recombinant E. coli JM109-COD [J]. , 2010, 29(1): 130-. |
[12] | ZHENG Zhongming, FOO YinDin, Jeffery Philip Obbard, LIN Jianping, CEN Peilin. A Simple Structure Model for Enzyme Production by Phanerochaete chrysosporium [J]. , 2003, 11(4): 414-419. |
[13] | XIA Bingle, LIU Qingliang, LI Minli, XU Xiaolong, SHI Chunhua, XIE Yongshu. Separation and Purification of Tobacco Peroxidase I from Nicotiana Tobaccum [J]. , 2003, 11(3): 341-343. |
[14] | Chu Ju, Gang Jie, Li Yourong, Yu Juntang. Membrane Microfiltration Fermentation of Glucose Oxidase with Cell Recycling [J]. , 1999, 7(1): 30-37. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 819
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||