CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5289-5304.DOI: 10.11949/0438-1157.20221033
• Reviews and monographs • Previous Articles Next Articles
Linan JIA1(), Yibo DU1, Bangjun GUO1, Xi ZHANG1,2()
Received:
2022-07-26
Revised:
2022-09-29
Online:
2023-01-17
Published:
2022-12-05
Contact:
Xi ZHANG
通讯作者:
张希
作者简介:
贾理男(1986—),女,博士研究生,助理研究员,jialinanjessica@126.com
基金资助:
CLC Number:
Linan JIA, Yibo DU, Bangjun GUO, Xi ZHANG. Recent progress on anode for sulfide-based all-solid-state lithium batteries[J]. CIESC Journal, 2022, 73(12): 5289-5304.
贾理男, 杜一博, 郭邦军, 张希. 基于硫化物电解质的全固态锂离子电池负极研究进展[J]. 化工学报, 2022, 73(12): 5289-5304.
Add to citation manager EndNote|Ris|BibTeX
负极类型 | 改善策略 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
锂金属 | 施加外压 | 提高负极/电解质的固-固接触面积,利于锂离子的传输 | 无法解决负极界面的稳定性问题 | [ |
人工SEI膜 | 避免了锂金属与硫化物固态电解质的直接接触,有效抑制了副反应的反应,改善了负极界面稳定性,提高了电池的循环寿命 | 人工SEI随着电池循环会不断消耗,最终仍会导致锂金属与硫化物电解质的直接接触,影响电池的使用寿命 | [ | |
电解质优化 | 抑制界面副反应的发生 | 电池长循环仍会产生界面的副反应以及锂枝晶的形成 | [ | |
锂负极的改性 | 避免将锂金属与硫化物电解质直接接触,抑制副反应与锂枝晶的产生 | 单一的负极改性无法抑制锂枝晶的形成,还需要对电解质的结构、组成进行优化设计 | [ | |
合金负极 | 将锂合金取代锂金属,如Li-In、Li-Al、Li-Sn、Li-Si合金等 | 锂合金负极可以提高界面润湿性,抑制界面副反应的发生,增强固态电解质界面的化学机械稳定性,避免锂枝晶生长造成的短路 | Li-M合金中,M为金属时,金属的氧化还原电位和分子量都较高,极大降低了固态电池的能量密度优势。Li-Si合金尚未有较好的数据支撑 | [ |
含硅负极 | 将含硅负极取代锂金属,如Si-C、nm-Si、μ-Si负极等 | 含硅负极具有超高的理论比容量,较低的工作电位,多项研究表明,硅负极与硫化物电解质具有良好的界面稳定性,是全固态锂电池极佳的负极选择 | nm-Si负极的成本较高,限制了规模化生产应用 | [ |
Table 1 Addressing strategies of interfacial issues between anodes and sulfide-based solid-state electrolytes
负极类型 | 改善策略 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
锂金属 | 施加外压 | 提高负极/电解质的固-固接触面积,利于锂离子的传输 | 无法解决负极界面的稳定性问题 | [ |
人工SEI膜 | 避免了锂金属与硫化物固态电解质的直接接触,有效抑制了副反应的反应,改善了负极界面稳定性,提高了电池的循环寿命 | 人工SEI随着电池循环会不断消耗,最终仍会导致锂金属与硫化物电解质的直接接触,影响电池的使用寿命 | [ | |
电解质优化 | 抑制界面副反应的发生 | 电池长循环仍会产生界面的副反应以及锂枝晶的形成 | [ | |
锂负极的改性 | 避免将锂金属与硫化物电解质直接接触,抑制副反应与锂枝晶的产生 | 单一的负极改性无法抑制锂枝晶的形成,还需要对电解质的结构、组成进行优化设计 | [ | |
合金负极 | 将锂合金取代锂金属,如Li-In、Li-Al、Li-Sn、Li-Si合金等 | 锂合金负极可以提高界面润湿性,抑制界面副反应的发生,增强固态电解质界面的化学机械稳定性,避免锂枝晶生长造成的短路 | Li-M合金中,M为金属时,金属的氧化还原电位和分子量都较高,极大降低了固态电池的能量密度优势。Li-Si合金尚未有较好的数据支撑 | [ |
含硅负极 | 将含硅负极取代锂金属,如Si-C、nm-Si、μ-Si负极等 | 含硅负极具有超高的理论比容量,较低的工作电位,多项研究表明,硅负极与硫化物电解质具有良好的界面稳定性,是全固态锂电池极佳的负极选择 | nm-Si负极的成本较高,限制了规模化生产应用 | [ |
1 | Hatzell K B, Chen X C, Cobb C L, et al. Challenges in lithium metal anodes for solid-state batteries[J]. ACS Energy Letters, 2020, 5(3): 922-934. |
2 | Ashuri M, He Q R, Shaw L L. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter[J]. Nanoscale, 2016, 8(1): 74-103. |
3 | Dunlap N A, Kim S, Jeong J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J]. Solid State Ionics, 2018, 324: 207-217. |
4 | Trevey J, Jang J S, Jung Y S, et al. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(9): 1830-1833. |
5 | Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: 16030. |
6 | Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
7 | Iwasaki R, Hori S, Kanno R, et al. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12 [J]. Chemistry of Materials, 2019, 31(10): 3694-3699. |
8 | Deiseroth H J, Kong S T, Eckert H, et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie, 2008, 47(4): 755-758. |
9 | Xu R C, Xia X H, Yao Z J, et al. Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries[J]. Electrochimica Acta, 2016, 219: 235-240. |
10 | Wenzel S, Sedlmaier S J, Dietrich C, et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes[J]. Solid State Ionics, 2018, 318: 102-112. |
11 | Shen Z Y, Zhang W D, Zhu G N, et al. Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries[J]. Small Methods, 2020, 4(1): 1900592. |
12 | Zhang Q, Cao D X, Ma Y, et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Advanced Materials, 2019, 31(44): 1901131. |
13 | McCloskey B D. Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4581-4588. |
14 | Betz J, Bieker G, Meister P, et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems[J]. Advanced Energy Materials, 2019, 9(22): 1900761. |
15 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
Wu J H, Yao X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
16 | Wenzel S, Leichtweiss T, Krüger D, et al. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
17 | Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chemistry of Materials, 2016, 28(7): 2400-2407. |
18 | Mukhopadhyay A, Sheldon B W. Deformation and stress in electrode materials for Li-ion batteries[J]. Progress in Materials Science, 2014, 63: 58-116. |
19 | Koerver R, Zhang W B, de Biasi L, et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries[J]. Energy & Environmental Science, 2018, 11(8): 2142-2158. |
20 | Cannarella J, Arnold C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269: 7-14. |
21 | Tian H K, Qi Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. |
22 | Fincher C D, Ojeda D, Zhang Y W, et al. Mechanical properties of metallic lithium: from nano to bulk scales[J]. Acta Materialia, 2020, 186: 215-222. |
23 | Masias A, Felten N, Garcia-Mendez R, et al. Elastic, plastic, and creep mechanical properties of lithium metal[J]. Journal of Materials Science, 2019, 54(3): 2585-2600. |
24 | Narayan S, Anand L. A large deformation elastic-viscoplastic model for lithium[J]. Extreme Mechanics Letters, 2018, 24: 21-29. |
25 | Herbert E G, Hackney S A, Thole V, et al. Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of diffusion-mediated flow[J]. Journal of Materials Research, 2018, 33(10): 1347-1360. |
26 | Herbert E G, Hackney S A, Thole V, et al. Nanoindentation of high-purity vapor deposited lithium films: a mechanistic rationalization of the transition from diffusion to dislocation-mediated flow[J]. Journal of Materials Research, 2018, 33(10): 1361-1368. |
27 | Herbert E G, Hackney S A, Dudney N J, et al. Nanoindentation of high-purity vapor deposited lithium films: the elastic modulus[J]. Journal of Materials Research, 2018, 33(10): 1335-1346. |
28 | Xu C C, Shen Y Q, Li J, et al. Robust superhydrophobic carbon fiber sponge used for efficient oil/corrosive solution mixtures separation[J]. Vacuum, 2017, 141: 57-61. |
29 | Monroe C, Newman J. Dendrite growth in lithium/polymer systems[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377. |
30 | Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics[J]. Journal of the Electrochemical Society, 2004, 151(6): A880. |
31 | Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396. |
32 | Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003. |
33 | Swamy T, Park R, Sheldon B W, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet[J]. Journal of the Electrochemical Society, 2018, 165(16): A3648-A3655. |
34 | Nagao M, Hayashi A, Tatsumisago M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(42): 18600-18606. |
35 | Yu S, Siegel D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29(22): 9639-9647. |
36 | Raj R, Wolfenstine J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. |
37 | Zhang X, Wang Q J, Harrison K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012. |
38 | Wang Y X, Liu T J, Kumar J. Effect of pressure on lithium metal deposition and stripping against sulfide-based solid electrolytes[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34771-34776. |
39 | Wang C, Sun X L, Yang L, et al. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(1): 2001698. |
40 | Li J R, Su H, Li M, et al. A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries[J]. Chemical Engineering Journal, 2022, 431: 134019. |
41 | Gao Y, Wang D W, Li Y C, et al. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie, 2018, 57(41): 13608-13612. |
42 | Duan C, Cheng Z, Li W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li–S battery by chemical iodine-vapor deposition[J]. Energy & Environmental Science, 2022, 15(8): 3236-3245. |
43 | Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38): 1902125. |
44 | Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Advanced Functional Materials, 2019, 29(26): 1900392. |
45 | Sun Y L, Suzuki K, Hara K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources, 2016, 324: 798-803. |
46 | Xu R C, Xia X H, Wang X L, et al. Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
47 | Liu G Z, Xie D J, Wang X L, et al. High air-stability and superior lithium ion conduction of Li3+3 x P1- x Zn x S4- x O x by aliovalent substitution of ZnO for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 266-274. |
48 | Ye L H, Li X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222. |
49 | Su Y B, Ye L H, Fitzhugh W, et al. A more stable lithium anode by mechanical constriction for solid state batteries[J]. Energy & Environmental Science, 2020, 13(3): 908-916. |
50 | Gil-González E, Ye L H, Wang Y C, et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Materials, 2022, 45: 484-493. |
51 | Lewis J A, Cavallaro K A, Liu Y, et al. The promise of alloy anodes for solid-state batteries[J]. Joule, 2022, 6(7): 1418-1430. |
52 | Santhosha A L, Medenbach L, Buchheim J R, et al. The indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability[J]. Batteries & Supercaps, 2019, 2(6): 524-529. |
53 | Whiteley J M, Taynton P, Zhang W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Advanced Materials, 2015, 27(43): 6922-6927. |
54 | Cao D X, Zhang Y B, Nolan A M, et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating[J]. Nano Letters, 2020, 20(3): 1483-1490. |
55 | Auvergniot J, Cassel A, Ledeuil J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chemistry of Materials, 2017, 29(9): 3883-3890. |
56 | Luo S T, Wang Z Y, Li X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12: 6968. |
57 | Pan H, Zhang M H, Cheng Z, et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Science Advances, 2022, 8(15): eabn4372. |
58 | Sakuma M, Suzuki K, Hirayama M, et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics, 2016, 285: 101-105. |
59 | Hashimoto Y, Machida N, Shigematsu T. Preparation of Li4.4Ge x Si1- x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries[J]. Solid State Ionics, 2004, 175(1/2/3/4): 177-180. |
60 | Park H W, Song J H, Choi H, et al. Anode performance of lithium-silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries[J]. Japanese Journal of Applied Physics, 2014, 53(8S3): 08NK02. |
61 | Choi H J, Kang D W, Park J W, et al. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries [J]. Advanced Science, 2022, 9(1): 2103826. |
62 | Kato A, Suyama M, Hotehama C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films[J]. Journal of the Electrochemical Society, 2018, 165(9): A1950-A1954. |
63 | Kato A, Kowada H, Deguchi M, et al. XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries[J]. Solid State Ionics, 2018, 322: 1-4. |
64 | Kato A, Hayashi A, Tatsumisago M. Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films[J]. Journal of Power Sources, 2016, 309: 27-32. |
65 | Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014, 8(8): 8591-8599. |
66 | Zhang F Z, Yang J P. Boosting initial coulombic efficiency of Si-based anodes: a review[J]. Emergent Materials, 2020, 3(3): 369-380. |
67 | Beaulieu L Y, Eberman K W, Turner R L, et al. Colossal reversible volume changes in lithium alloys[J]. Electrochemical and Solid-State Letters, 2001, 4(9): A137. |
68 | Poetke S, Hippauf F, Baasner A, et al. Nanostructured Si-C composites as high-capacity anode material for all-solid-state lithium-ion batteries[J]. Batteries & Supercaps, 2021, 4(8): 1323-1334. |
69 | Sakabe J, Ohta N, Ohnishi T, et al. Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries[J]. Communications Chemistry, 2018, 1: 24. |
70 | Okuno R, Yamamoto M, Terauchi Y, et al. Stable cyclability of porous Si anode applied for sulfide-based all-solid-state batteries[J]. Energy Procedia, 2019, 156: 183-186. |
71 | Cangaz S, Hippauf F, Reuter F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): 2001320. |
72 | Ohta N, Kimura S, Sakabe J, et al. Anode properties of Si nanoparticles in all-solid-state Li batteries[J]. ACS Applied Energy Materials, 2019, 2(10): 7005-7008. |
73 | Cao D X, Sun X, Li Y J, et al. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes[J]. Advanced Materials, 2022, 34(24): 2200401. |
74 | Tan D H S, Chen Y T, Yang H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
75 | Cao D X, Sun X, Wang Y, et al. Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries[J]. Energy Storage Materials, 2022, 48: 458-465. |
76 | Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
77 | Otoyama M, Sakuda A, Hayashi A, et al. Optical microscopic observation of graphite composite negative electrodes in all-solid-state lithium batteries[J]. Solid State Ionics, 2018, 323: 123-129. |
78 | Oh D Y, Kim D H, Jung S H, et al. Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(39): 20771-20779. |
79 | Oh P, Yun J, Choi J H, et al. Development of high-energy anodes for all-solid-state lithium batteries based on sulfide electrolytes[J]. Angewandte Chemie, 2022, 61(25): e202201249. |
80 | Heubner C, Maletti S, Auer H, et al. From lithium-metal toward anode-free solid-state batteries: current developments, issues, and challenges[J]. Advanced Functional Materials, 2021, 31(51): 2106608. |
81 | Gu D, Kim H, Lee J H, et al. Surface-roughened current collectors for anode-free all-solid-state batteries[J]. Journal of Energy Chemistry, 2022, 70: 248-257. |
82 | Wu J H, Liu S F, Han F D, et al. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Advanced Materials, 2021, 33(6): 2000751. |
83 | Wang X Y, He K, Li S Y, et al. Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: a review[J]. Nano Research, 2022, . |
84 | Wang S, Fang R Y, Li Y T, et al. Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes[J]. Journal of Materiomics, 2021, 7(2): 209-218. |
[1] | XIONG Shizhao1,HONG Xiaobin1,XIE Kai1,RONG Lixia2. Advance in improvement of cycle life of lithium-sulfur batteries [J]. , 2011, 30(5): 991-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||