CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1010-1032.DOI: 10.11949/0438-1157.20221350
• Reviews and monographs • Previous Articles Next Articles
Qian WANG1(), Shenyong LI1,2, Shuai KANG1, Wei PANG1, Longlong HAO2, Shenjun QIN1,2()
Received:
2022-10-12
Revised:
2023-01-05
Online:
2023-04-19
Published:
2023-03-05
Contact:
Shenjun QIN
王倩1(), 李神勇1,2, 康帅1, 庞薇1, 郝龙龙2, 秦身钧1,2()
通讯作者:
秦身钧
作者简介:
王倩(1999—),女,硕士研究生,wq312737@163.com
基金资助:
CLC Number:
Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash[J]. CIESC Journal, 2023, 74(3): 1010-1032.
王倩, 李神勇, 康帅, 庞薇, 郝龙龙, 秦身钧. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032.
来源 | 质量分数/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O | P2O5 | |
山西某电厂[ | 44.12 | 42.17 | 2.43 | 2.44 | 0.68 | 1.67 | 0.14 | — | 0.69 |
淮南平圩电厂[ | 27.62 | 51.49 | 9.25 | 3.19 | 0.58 | 0.8 | 1.31 | 0.148 | |
内蒙古某燃煤电厂循环流化床[ | 50.97 | 34.87 | 1.91 | 2.25 | 0.13 | 2.15 | 0.09 | 0.34 | — |
新疆某电厂[ | 18.20 | 53.26 | 8.48 | 10.92 | 2.48 | — | 2.08 | 1.11 | — |
宁夏某电厂[ | 30.0 | 50.7 | 6.1 | 6.2 | 3.2 | — | — | 2.1 | — |
郑州某电厂[ | 31.15 | 53.97 | 4.16 | — | 1.01 | 2.04 | — | 4.01 | — |
Table 1 Chemical composition of fly ash of different origin
来源 | 质量分数/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | Fe2O3 | CaO | MgO | TiO2 | Na2O | K2O | P2O5 | |
山西某电厂[ | 44.12 | 42.17 | 2.43 | 2.44 | 0.68 | 1.67 | 0.14 | — | 0.69 |
淮南平圩电厂[ | 27.62 | 51.49 | 9.25 | 3.19 | 0.58 | 0.8 | 1.31 | 0.148 | |
内蒙古某燃煤电厂循环流化床[ | 50.97 | 34.87 | 1.91 | 2.25 | 0.13 | 2.15 | 0.09 | 0.34 | — |
新疆某电厂[ | 18.20 | 53.26 | 8.48 | 10.92 | 2.48 | — | 2.08 | 1.11 | — |
宁夏某电厂[ | 30.0 | 50.7 | 6.1 | 6.2 | 3.2 | — | — | 2.1 | — |
郑州某电厂[ | 31.15 | 53.97 | 4.16 | — | 1.01 | 2.04 | — | 4.01 | — |
方法 | 原料 | 反应装置 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-0.5L) | 酸浸:180℃,4 h,75 μm,50% H2SO4, CFA∶H2SO4=1∶1.2 | Al2O3:82.4% Fe2O3:76.1% | [ |
加压酸浸 | 粉煤灰(山西朔州) | 反应釜 | 酸浸:180℃,4 h,45%(质量) H2SO4 | Al:90% Fe:98% | [ |
高压浸出 | 粉煤灰(神华) | 自制高压釜 | 酸浸:180℃,5 h,30% H2SO4 | Al2O3:93.1% | [ |
加压碱浸 | 粉煤灰 | PF-100M高压反应釜 | 碱浸:95℃,2 h,S/L=1∶2.5,200 g/L NaOH | Si:24.23% | [ |
高压酸浸 | 粉煤灰(山西朔州) | 1L锆质高压反应釜 | 酸浸:230℃,2 h,S/L=1∶10 | Al:89.43% Fe:69.78% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L),2.2 MPa | 酸浸:220℃,180 min,3 mol/L H2SO4,S/L=1∶10 | Al:82.51% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L) | 酸浸:180℃,4 h,50% H2SO4 | Al:82.4% | [ |
加压酸浸 | 煤系列高岭土(湖北宜昌) | 反应釜 | 煅烧:800℃,2 h,20%(质量) H2SO4 | Al:98.7% | [ |
酸浸:200℃,60 min,15%(质量) HCl,S/L=1∶10 |
Table 2 Application of pressure pretreatment technology in activation of fly ash
方法 | 原料 | 反应装置 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-0.5L) | 酸浸:180℃,4 h,75 μm,50% H2SO4, CFA∶H2SO4=1∶1.2 | Al2O3:82.4% Fe2O3:76.1% | [ |
加压酸浸 | 粉煤灰(山西朔州) | 反应釜 | 酸浸:180℃,4 h,45%(质量) H2SO4 | Al:90% Fe:98% | [ |
高压浸出 | 粉煤灰(神华) | 自制高压釜 | 酸浸:180℃,5 h,30% H2SO4 | Al2O3:93.1% | [ |
加压碱浸 | 粉煤灰 | PF-100M高压反应釜 | 碱浸:95℃,2 h,S/L=1∶2.5,200 g/L NaOH | Si:24.23% | [ |
高压酸浸 | 粉煤灰(山西朔州) | 1L锆质高压反应釜 | 酸浸:230℃,2 h,S/L=1∶10 | Al:89.43% Fe:69.78% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L),2.2 MPa | 酸浸:220℃,180 min,3 mol/L H2SO4,S/L=1∶10 | Al:82.51% | [ |
加压酸浸 | 粉煤灰(内蒙古) | 高压反应釜(GS-1L) | 酸浸:180℃,4 h,50% H2SO4 | Al:82.4% | [ |
加压酸浸 | 煤系列高岭土(湖北宜昌) | 反应釜 | 煅烧:800℃,2 h,20%(质量) H2SO4 | Al:98.7% | [ |
酸浸:200℃,60 min,15%(质量) HCl,S/L=1∶10 |
方法 | 原料 | 真空度 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
真空还原冶金工艺(VRMP) | 富锗粉煤灰(内蒙古) | 10 Pa | 真空还原:900℃, 10%(质量)焦粉,40 min,L/S=20 | Ge:93.96% | [ |
真空还原氯化蒸馏 | 富锗粉煤灰(内蒙古) | 259.63 Pa | 真空还原:920.53℃,16.64%(质量)还原剂(焦粉); 氯化蒸馏:8 mol/L HCl,S/L=1∶7,8%(质量) MnO2 | Ge:83.48%±0.36% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | -0.04 MPa | 焙烧:CFA∶Na2CO3=1∶1 | [ | |
浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
常规加热:900℃,60 min; | Al:93.10% | ||||
真空下常规加热:900℃,20 min; | Al:93.02% | ||||
微波加热:700℃,30 min; | Al:95.96% | ||||
真空下微波加热:700℃,20 min | Al:95.43% | ||||
真空热还原 | 粉煤灰(内蒙古) | 100 Pa | 真空还原:1200℃,6 h | Al2O3:82.61% | [ |
焙烧-酸浸 | 粉煤灰 | -0.04 MPa | 焙烧:HAFA∶Na2CO3=1∶1 | [ | |
常规加热:900℃,60 min; | Al:93% | ||||
真空下常规加热:900℃,20 min; | Al:93% | ||||
微波加热:700℃,30 min; | Al:96% | ||||
真空下微波加热:700℃,20 min | Al:96% |
Table 3 Application of vacuum pretreatment technology in activation of fly ash
方法 | 原料 | 真空度 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
真空还原冶金工艺(VRMP) | 富锗粉煤灰(内蒙古) | 10 Pa | 真空还原:900℃, 10%(质量)焦粉,40 min,L/S=20 | Ge:93.96% | [ |
真空还原氯化蒸馏 | 富锗粉煤灰(内蒙古) | 259.63 Pa | 真空还原:920.53℃,16.64%(质量)还原剂(焦粉); 氯化蒸馏:8 mol/L HCl,S/L=1∶7,8%(质量) MnO2 | Ge:83.48%±0.36% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | -0.04 MPa | 焙烧:CFA∶Na2CO3=1∶1 | [ | |
浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
常规加热:900℃,60 min; | Al:93.10% | ||||
真空下常规加热:900℃,20 min; | Al:93.02% | ||||
微波加热:700℃,30 min; | Al:95.96% | ||||
真空下微波加热:700℃,20 min | Al:95.43% | ||||
真空热还原 | 粉煤灰(内蒙古) | 100 Pa | 真空还原:1200℃,6 h | Al2O3:82.61% | [ |
焙烧-酸浸 | 粉煤灰 | -0.04 MPa | 焙烧:HAFA∶Na2CO3=1∶1 | [ | |
常规加热:900℃,60 min; | Al:93% | ||||
真空下常规加热:900℃,20 min; | Al:93% | ||||
微波加热:700℃,30 min; | Al:96% | ||||
真空下微波加热:700℃,20 min | Al:96% |
方法 | 原料 | 活化助剂 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:90% | [ |
焙烧-酸浸 | Shell炉煤气化粉煤灰 | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:w(H2SO4)=35%,95℃,5 h,S/L=1∶3 | Al2O3:95% | [ |
CFA∶NaOH=3∶2 | Al2O3:85% | ||||
CFA∶CaCl2=1∶0.8 | Al2O3:96% | ||||
CFA∶Ca(OH)2=3∶2 | Al2O3:56% | ||||
CFA∶(NH4)2SO4=6∶1 | Al2O3:48% | ||||
CFA∶NaOH∶Na2CO3=3∶2∶1 | Al2O3:98% | ||||
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2.5 h,3 mol/L H2SO4,S/L=1∶5 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:850℃,2 h; 酸浸:98℃,2 h,25% H2SO4,S/L=1∶5 | Al2O3:94% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶Na2CO3=1∶0.85 | 焙烧:880℃,1.5 h; 酸浸:1 h,8 mol/L H2SO4 | Al2O3:69.3% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶NaOH=1∶1 | 焙烧:600℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:60% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶(NH4)2SO4=1∶4 | 焙烧:380℃,60 min; 酸浸:90℃,60 min,S/L=1∶10,10% H2SO4 | Al:92.65% | [ |
CFA∶Na2CO3=1∶1 | 焙烧:900℃,60 min; 酸浸:95℃,60 min,S/L=1∶20,30% H2SO4 | Al:92.23% | |||
焙烧-酸浸 | 粉煤灰(天津) | CFA∶CaCl2=1∶0.8 | 焙烧:900℃,30 min; 酸浸:常温,30 min,4 mol/L H2SO4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,6 mol/L HCl | Li:81% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,70 min,S/L=1∶8,400 r/min | Al2O3:95.9% | [ |
焙烧-水浸 | 粉煤灰(内蒙古) | Al2O3∶NH4HSO4=1∶8 | 焙烧:400℃,60 min; 浸出:90℃,60 min,S/L=1∶9 | Al:90.95% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,50 min,S/L=1∶8,500 r/min | Al2O3:84.5% | [ |
焙烧-酸浸 | 粉煤灰(伊朗) | CFA∶Na2CO3=1∶0.5 | 焙烧:850℃,2 h; 酸浸:0.5 mol/L柠檬酸,60 min,30℃ | Ge:98.15% V:75.31% Li:97.30% | [ |
碱熔-酸浸 | 粉煤灰(贵州) | CFA∶Na2CO3=1∶1 | 焙烧:860℃,0.5h; 酸浸:2 h,400 r/min,3 mol/L HCl,S/L=1∶20 | REE:23% REE:72.78% | [ |
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2 h,3 mol/L H2SO4,S/L=1∶4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶K2CO3∶Na2CO3= 1∶0.5∶1.5 | 焙烧:950℃,2 h; 酸浸:60℃,2 h,3 mol/L HCl,S/L=1∶10 | Ga:93.43% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶NaF=1∶0.75 | 焙烧:800℃,10 min; 酸浸:1200℃,1 h,2 mol/L HNO3,S/L=1∶10 | Ga:94% | [ |
Table 4 Application of roasting pretreatment technology in activation of fly ash
方法 | 原料 | 活化助剂 | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:90% | [ |
焙烧-酸浸 | Shell炉煤气化粉煤灰 | CFA∶Na2CO3=1∶1 | 焙烧:900℃,2 h; 酸浸:w(H2SO4)=35%,95℃,5 h,S/L=1∶3 | Al2O3:95% | [ |
CFA∶NaOH=3∶2 | Al2O3:85% | ||||
CFA∶CaCl2=1∶0.8 | Al2O3:96% | ||||
CFA∶Ca(OH)2=3∶2 | Al2O3:56% | ||||
CFA∶(NH4)2SO4=6∶1 | Al2O3:48% | ||||
CFA∶NaOH∶Na2CO3=3∶2∶1 | Al2O3:98% | ||||
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2.5 h,3 mol/L H2SO4,S/L=1∶5 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:850℃,2 h; 酸浸:98℃,2 h,25% H2SO4,S/L=1∶5 | Al2O3:94% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶Na2CO3=1∶0.85 | 焙烧:880℃,1.5 h; 酸浸:1 h,8 mol/L H2SO4 | Al2O3:69.3% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶NaOH=1∶1 | 焙烧:600℃,2 h; 酸浸:100℃,2 h,20%(质量) HCl,S/L=1∶3 | Al2O3:60% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶(NH4)2SO4=1∶4 | 焙烧:380℃,60 min; 酸浸:90℃,60 min,S/L=1∶10,10% H2SO4 | Al:92.65% | [ |
CFA∶Na2CO3=1∶1 | 焙烧:900℃,60 min; 酸浸:95℃,60 min,S/L=1∶20,30% H2SO4 | Al:92.23% | |||
焙烧-酸浸 | 粉煤灰(天津) | CFA∶CaCl2=1∶0.8 | 焙烧:900℃,30 min; 酸浸:常温,30 min,4 mol/L H2SO4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(太原) | CFA∶Na2CO3=1∶0.8 | 焙烧:900℃,2 h; 酸浸:100℃,2 h,6 mol/L HCl | Li:81% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,70 min,S/L=1∶8,400 r/min | Al2O3:95.9% | [ |
焙烧-水浸 | 粉煤灰(内蒙古) | Al2O3∶NH4HSO4=1∶8 | 焙烧:400℃,60 min; 浸出:90℃,60 min,S/L=1∶9 | Al:90.95% | [ |
焙烧-水溶 | 粉煤灰(黑龙江) | CFA∶NH4HSO4=1∶8.5 | 焙烧:420℃,60 min; 水溶:90℃,50 min,S/L=1∶8,500 r/min | Al2O3:84.5% | [ |
焙烧-酸浸 | 粉煤灰(伊朗) | CFA∶Na2CO3=1∶0.5 | 焙烧:850℃,2 h; 酸浸:0.5 mol/L柠檬酸,60 min,30℃ | Ge:98.15% V:75.31% Li:97.30% | [ |
碱熔-酸浸 | 粉煤灰(贵州) | CFA∶Na2CO3=1∶1 | 焙烧:860℃,0.5h; 酸浸:2 h,400 r/min,3 mol/L HCl,S/L=1∶20 | REE:23% REE:72.78% | [ |
焙烧-酸浸 | 粉煤灰(淮南) | CFA∶Na2CO3=1∶0.9 | 焙烧:875℃,2 h; 酸浸:90℃,2 h,3 mol/L H2SO4,S/L=1∶4 | Al2O3:95% | [ |
焙烧-酸浸 | 粉煤灰(山西) | CFA∶K2CO3∶Na2CO3= 1∶0.5∶1.5 | 焙烧:950℃,2 h; 酸浸:60℃,2 h,3 mol/L HCl,S/L=1∶10 | Ga:93.43% | [ |
焙烧-酸浸 | 粉煤灰(内蒙古) | CFA∶NaF=1∶0.75 | 焙烧:800℃,10 min; 酸浸:1200℃,1 h,2 mol/L HNO3,S/L=1∶10 | Ga:94% | [ |
方法 | 原料 | 微波功率/W | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
高温烧结-微波辐射 | 粉煤灰(云南) | 720 | 常规加热:2 h,CFA∶CaCO3∶Na2CO3=2.6∶2.2∶1; | Al2O3:76% | [ |
微波加热:720 W,10 min | Al2O3:95% | ||||
浮选-微波酸浸 | 粉煤灰(青海) | 常规酸浸:10% HCl,60℃,4 h; | Ga:74.08% | [ | |
微波酸浸:10% HCl,70℃,15 min,S/L=1∶5 | Ga:84.21% | ||||
焙烧-酸浸 | 粉煤灰 | 6000 | 常规加热:900℃,60 min,HAFA∶Na2CO3=1∶0.8; | Al:93.10% | [ |
微波加热:700℃,30 min,HAFA∶Na2CO3=1∶0.8; | Al:95.96% | ||||
酸浸:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
焙烧-酸浸 | 粉煤灰 (南非姆普马兰加) | 100 | 微波加热:280℃,60 min, CFA∶H2SO4+NH4HSO4=1∶1.2; 浸出:60℃,S/L=1∶5,30 min | Al:82.4% Ti:55.6% | [ |
焙烧-酸浸 | 粉煤灰(印度) | 900 | 常规加热:800℃,1 h; | Al:80% | [ |
微波加热:10 min; | Al:89.4% | ||||
酸浸:80℃,1 h,S/L=1∶25 | |||||
焙烧-酸浸 | 粉煤灰 | 500 | 焙烧-酸浸:1 h,80℃; | Si:0.72% Al:40.05% Fe:41.30% | [ |
焙烧-微波场酸浸:500 W,1 h,80℃ | Si:1.63% Al:59.17% Fe:49.20% | ||||
焙烧-碱浸 | 粉煤灰(某火电厂) | 焙烧:600℃,1.5 h,CFA∶Na2CO3=1∶1; | Si:85.62% Al:51.41% | [ | |
微波加热浸出:90℃,1 h,7.5 mol/L NaOH, S/L=1∶15 | |||||
焙烧-微波碱溶 | 粉煤灰(内蒙古) | 400 | 焙烧:850℃,2 h,CFA∶Na2CO3=1∶1; | Ga:82.28% | [ |
微波碱溶:90℃,50 min,200 g/L NaOH,S/L=1∶14 | |||||
焙烧-酸浸 | 粉煤灰 (上海吴泾电厂) | 500 | 常规加热:1200℃,1200 s,CaCO3; | Al:95%(温度降低了400℃,时间缩短至原先的1/20) | [ |
微波加热:800℃,60 s,CaCO3; | |||||
酸浸:98℃,1 h,10%(质量) HCl,S/L=1∶20 | |||||
焙烧-酸浸 | 粉煤灰 | 800 | 微波焙烧:5 min,CFA∶NaOH=1∶1; | Ti:85.77% | [ |
酸浸:88℃,8 h,11.64 mol/L HCl,CFA∶HCl=1∶9 | |||||
焙烧-酸浸 | 粉煤灰(新疆) | 水浴浸出:75℃,4 h,6 mol/L HCl,S/L=1∶5; | Li:40.56%① | [ | |
微波浸出:4 min,6 mol/L HCl,S/L=1∶5 | Li:62.83%① | ||||
焙烧-酸浸 | 粉煤灰(内蒙古) | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; | Al:95.10% | [ | |
微波加热:700℃,20 min,CFA∶Na2CO3=1∶1; | Al:95.52% | ||||
酸浸:60 min,6 mol/L HCl,S/L=1∶10 | |||||
微波辅助/常规浸出 | 富锗褐煤灰(云南) | 2000 | 微波浸出:65℃,90 min,10 mol/L HCl,S/L=1∶4 | Ge:83.62% | [ |
Ge:89.49% |
Table 5 Application of microwave pretreatment technology in activation of fly ash
方法 | 原料 | 微波功率/W | 实验条件 | 浸出率 | 文献 |
---|---|---|---|---|---|
高温烧结-微波辐射 | 粉煤灰(云南) | 720 | 常规加热:2 h,CFA∶CaCO3∶Na2CO3=2.6∶2.2∶1; | Al2O3:76% | [ |
微波加热:720 W,10 min | Al2O3:95% | ||||
浮选-微波酸浸 | 粉煤灰(青海) | 常规酸浸:10% HCl,60℃,4 h; | Ga:74.08% | [ | |
微波酸浸:10% HCl,70℃,15 min,S/L=1∶5 | Ga:84.21% | ||||
焙烧-酸浸 | 粉煤灰 | 6000 | 常规加热:900℃,60 min,HAFA∶Na2CO3=1∶0.8; | Al:93.10% | [ |
微波加热:700℃,30 min,HAFA∶Na2CO3=1∶0.8; | Al:95.96% | ||||
酸浸:90℃,60 min,8 mol/L HCl,S/L=1∶9 | |||||
焙烧-酸浸 | 粉煤灰 (南非姆普马兰加) | 100 | 微波加热:280℃,60 min, CFA∶H2SO4+NH4HSO4=1∶1.2; 浸出:60℃,S/L=1∶5,30 min | Al:82.4% Ti:55.6% | [ |
焙烧-酸浸 | 粉煤灰(印度) | 900 | 常规加热:800℃,1 h; | Al:80% | [ |
微波加热:10 min; | Al:89.4% | ||||
酸浸:80℃,1 h,S/L=1∶25 | |||||
焙烧-酸浸 | 粉煤灰 | 500 | 焙烧-酸浸:1 h,80℃; | Si:0.72% Al:40.05% Fe:41.30% | [ |
焙烧-微波场酸浸:500 W,1 h,80℃ | Si:1.63% Al:59.17% Fe:49.20% | ||||
焙烧-碱浸 | 粉煤灰(某火电厂) | 焙烧:600℃,1.5 h,CFA∶Na2CO3=1∶1; | Si:85.62% Al:51.41% | [ | |
微波加热浸出:90℃,1 h,7.5 mol/L NaOH, S/L=1∶15 | |||||
焙烧-微波碱溶 | 粉煤灰(内蒙古) | 400 | 焙烧:850℃,2 h,CFA∶Na2CO3=1∶1; | Ga:82.28% | [ |
微波碱溶:90℃,50 min,200 g/L NaOH,S/L=1∶14 | |||||
焙烧-酸浸 | 粉煤灰 (上海吴泾电厂) | 500 | 常规加热:1200℃,1200 s,CaCO3; | Al:95%(温度降低了400℃,时间缩短至原先的1/20) | [ |
微波加热:800℃,60 s,CaCO3; | |||||
酸浸:98℃,1 h,10%(质量) HCl,S/L=1∶20 | |||||
焙烧-酸浸 | 粉煤灰 | 800 | 微波焙烧:5 min,CFA∶NaOH=1∶1; | Ti:85.77% | [ |
酸浸:88℃,8 h,11.64 mol/L HCl,CFA∶HCl=1∶9 | |||||
焙烧-酸浸 | 粉煤灰(新疆) | 水浴浸出:75℃,4 h,6 mol/L HCl,S/L=1∶5; | Li:40.56%① | [ | |
微波浸出:4 min,6 mol/L HCl,S/L=1∶5 | Li:62.83%① | ||||
焙烧-酸浸 | 粉煤灰(内蒙古) | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; | Al:95.10% | [ | |
微波加热:700℃,20 min,CFA∶Na2CO3=1∶1; | Al:95.52% | ||||
酸浸:60 min,6 mol/L HCl,S/L=1∶10 | |||||
微波辅助/常规浸出 | 富锗褐煤灰(云南) | 2000 | 微波浸出:65℃,90 min,10 mol/L HCl,S/L=1∶4 | Ge:83.62% | [ |
Ge:89.49% |
方法 | 原料 | 超声功率/W | 实验条件 | 浸出率 | 文献 | |
---|---|---|---|---|---|---|
无超声 | 有超声 | |||||
超声波-过氧化氢辅助硫酸浸出 | 粉煤灰(伊朗) | 浸出:15.67%(vol) NaOH,32.18%(vol) H2SO4, 50℃,1 h,S/L=0.6 g/L | V:73% Y:35% | V:100% Y:97% | [ | |
超声波辅助酸浸 | 粉煤灰(内蒙古) | 25% | 研磨:60 min; 焙烧:1 h; 酸浸:85℃,S/L=1∶(7~9) | Al:67% | Al:86% | [ |
浓硫酸烧结-超声浸出 | 粉煤灰(内蒙古) | 333 | 研磨:3 h; 烧结:290℃,1 h; 浸出:80% H2SO4,CFA∶H2SO4=1.5∶1 | Al2O3:90.5%(时间缩短15~30 min,温度降低5~10℃) | [ | |
超声波辅助碱性溶解 | 粉煤灰(辽宁) | 720 | 碱溶:25%(质量) NaOH,转速300 r/min, 70 min,110℃ | Si:34.96% | Si:54.42% | [ |
超声两步浸出法 | 粉煤灰(韩国) | 100 | 第一步:室温,固体负载量为 250 g灰/L H2SO4,1.0 mol/L H2SO4 第二步:超声波与加热套相结合浸出, 30℃、3 h,90℃、4 h | Y:66% Nd:63% | [ | |
柠檬汁有机酸超声辅助浸出 | 粉煤灰 | 159 | 浸出:27.9%柠檬汁, 10% H2O2,35℃,2 h,S/L=0.01% | V:88.7% | [ |
Table 6 Application of ultrasonic pretreatment technology in activation of fly ash
方法 | 原料 | 超声功率/W | 实验条件 | 浸出率 | 文献 | |
---|---|---|---|---|---|---|
无超声 | 有超声 | |||||
超声波-过氧化氢辅助硫酸浸出 | 粉煤灰(伊朗) | 浸出:15.67%(vol) NaOH,32.18%(vol) H2SO4, 50℃,1 h,S/L=0.6 g/L | V:73% Y:35% | V:100% Y:97% | [ | |
超声波辅助酸浸 | 粉煤灰(内蒙古) | 25% | 研磨:60 min; 焙烧:1 h; 酸浸:85℃,S/L=1∶(7~9) | Al:67% | Al:86% | [ |
浓硫酸烧结-超声浸出 | 粉煤灰(内蒙古) | 333 | 研磨:3 h; 烧结:290℃,1 h; 浸出:80% H2SO4,CFA∶H2SO4=1.5∶1 | Al2O3:90.5%(时间缩短15~30 min,温度降低5~10℃) | [ | |
超声波辅助碱性溶解 | 粉煤灰(辽宁) | 720 | 碱溶:25%(质量) NaOH,转速300 r/min, 70 min,110℃ | Si:34.96% | Si:54.42% | [ |
超声两步浸出法 | 粉煤灰(韩国) | 100 | 第一步:室温,固体负载量为 250 g灰/L H2SO4,1.0 mol/L H2SO4 第二步:超声波与加热套相结合浸出, 30℃、3 h,90℃、4 h | Y:66% Nd:63% | [ | |
柠檬汁有机酸超声辅助浸出 | 粉煤灰 | 159 | 浸出:27.9%柠檬汁, 10% H2O2,35℃,2 h,S/L=0.01% | V:88.7% | [ |
技术方法 | 原料中氧化铝含量/% | 实验条件 | 铝浸出率/% | 文献 | |
---|---|---|---|---|---|
未预处理 | 预处理后 | ||||
研磨 | 42.8 | 研磨:振动磨,480 min,2.769~6.963 μm,球料比1∶4; 酸浸:220℃,12 mol/L H2SO4 | 27.8 | 74.5 | [ |
加压 | 30.63 | 酸浸:160℃,1.2 mol/L H2SO4,S/L=1∶10; 2.2 MPa,220℃,1.2 mol/L H2SO4,S/L=1∶10 | 33.87 | 62.71 | [ |
真空 | 49.68 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 真空下常规加热:-0.04 MPa,900℃,20 min,CFA∶Na2CO3=1∶1; 浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | 93.10 | 93.02 | [ |
预脱硅 | 48.45 | 预脱硅:150 g/L NaOH,130℃,1 h,S/L=1∶2; 焙烧:Na2CO3∶SiO2=1∶0.7,900℃,2 h; 酸浸:4 mol/L H2SO4,1 h | 82 | 93.1 | [ |
焙烧 | 17.50 | 焙烧:900℃,2 h,CFA∶Na2CO3=1∶1; 酸浸:95℃,5 h,w(H2SO4)=35%,S/L=1∶3 | 44 | 95 | [ |
微波 | 46.22 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 微波加热:2 kW,2.45 GHz,700℃,20 min,CFA∶Na2CO3=1∶1; 酸浸:60 min,6 mol/L HCl,S/L=1∶10 | 95.10 | 95.52 | [ |
超声 | 33.54 | 研磨:3 h; 烧结:290℃,1 h; 超声:80% H2SO4,CFA∶H2SO4=1.5∶1,333 W | 90.5 | [ | |
(时间减少15~30 min;温度降低5~10℃) |
Table 7 Leaching rates of aluminum in fly ash under different pretreatment technologies
技术方法 | 原料中氧化铝含量/% | 实验条件 | 铝浸出率/% | 文献 | |
---|---|---|---|---|---|
未预处理 | 预处理后 | ||||
研磨 | 42.8 | 研磨:振动磨,480 min,2.769~6.963 μm,球料比1∶4; 酸浸:220℃,12 mol/L H2SO4 | 27.8 | 74.5 | [ |
加压 | 30.63 | 酸浸:160℃,1.2 mol/L H2SO4,S/L=1∶10; 2.2 MPa,220℃,1.2 mol/L H2SO4,S/L=1∶10 | 33.87 | 62.71 | [ |
真空 | 49.68 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 真空下常规加热:-0.04 MPa,900℃,20 min,CFA∶Na2CO3=1∶1; 浸出:90℃,60 min,8 mol/L HCl,S/L=1∶9 | 93.10 | 93.02 | [ |
预脱硅 | 48.45 | 预脱硅:150 g/L NaOH,130℃,1 h,S/L=1∶2; 焙烧:Na2CO3∶SiO2=1∶0.7,900℃,2 h; 酸浸:4 mol/L H2SO4,1 h | 82 | 93.1 | [ |
焙烧 | 17.50 | 焙烧:900℃,2 h,CFA∶Na2CO3=1∶1; 酸浸:95℃,5 h,w(H2SO4)=35%,S/L=1∶3 | 44 | 95 | [ |
微波 | 46.22 | 常规加热:900℃,60 min,CFA∶Na2CO3=1∶1; 微波加热:2 kW,2.45 GHz,700℃,20 min,CFA∶Na2CO3=1∶1; 酸浸:60 min,6 mol/L HCl,S/L=1∶10 | 95.10 | 95.52 | [ |
超声 | 33.54 | 研磨:3 h; 烧结:290℃,1 h; 超声:80% H2SO4,CFA∶H2SO4=1.5∶1,333 W | 90.5 | [ | |
(时间减少15~30 min;温度降低5~10℃) |
预处理方法 | 机理 | 优点 | 缺点 |
---|---|---|---|
物理预处理 分选 筛分 | 粒径差异 | 1.结构简单,布局合理,功能完善 2.设备运行可靠,检修维护工作 量小 | 1.筛选效率低 2.分离精度低 |
重选 | 密度差异 | 1.低成本、高效率 2.操作简便 3.粒径范围大 | 1.分离精度相对较低 2.不适用于细颗粒 |
浮选 | 表面湿润性差异 | 1.高分离精度 2.适用于细颗粒 3.适应良好 | 1.需要大量的水 2.使用有效试剂 3.需要脱水和干燥设备 |
电选 | 导电性差异 | 1.操作简单,运行成本低 2.节约水资源 3.低环境污染 | 1.湿度要求低 2.充电装置要求高 |
磁选 | 磁性差异 | 1.无二次污染 2.成本低 | 1.分选效率低 2.浪费水资源 |
机械研磨 | 磨削、挤压和碰撞等机械作用 | 1.工艺简单 2.能耗较低 | 1.只适用于粗灰 2.提高粉煤灰的活性有限 |
加压 | 高温、高压 | 1.反应时间短,浸出率高 2.环境友好 | 1.投资大 2.能耗高、高温高压对设备要求高 |
真空 | 在低于正常大气压力的给定空间下 进行实验操作等所需的技术 | 1.加快反应效率 2.缩短反应时间 3.避免环境污染 | 1.技术成本高 2.耗电高 |
化学预处理 预脱硅 | 加氢氧化钠脱去粉煤灰中以无定形 状态存在的SiO2 | 1.尾渣量少 2.能耗较低,设备腐蚀小 | 1.脱硅反应时间不宜过长 2.经济性、环保性差 |
焙烧 | 高温破坏晶相稳定结构 | 1.操作简单 2.能耗低,生产环境好 | 对环境造成二次污染 |
微波 | 分子极化 | 1.选择性加热,快速加热,热转化 效率高,均匀加热 2.环境友好 | 1.微波加热速率过快导致样品内部 结构破坏 2.影响因素很多,过程不易控制 |
超声波 | 机械效应、空化作用、热效应 | 1.提取时间短,提取产率高 2.操作简单,设备维护、保养方便 | 1.设备大型化,造价高,噪声大, 能耗高 2.超声波探头表面的老化会改变 提取效率 |
表面活性剂 | 界面吸附、润湿作用、增溶作用、分散作用 | 1.增加提取效率,缩短提取时间 2.降低成本 3.优化有效组分 4.安全环保 | 局限性比较大,多采用表面活性剂 与其他技术联合 |
生物预处理 微生物 | 破坏粉煤灰表面结构 | 1.低能耗、低成本 2.环境友好 | 提取缓慢 |
Table 8 Comparison of pretreatment methods of fly ash
预处理方法 | 机理 | 优点 | 缺点 |
---|---|---|---|
物理预处理 分选 筛分 | 粒径差异 | 1.结构简单,布局合理,功能完善 2.设备运行可靠,检修维护工作 量小 | 1.筛选效率低 2.分离精度低 |
重选 | 密度差异 | 1.低成本、高效率 2.操作简便 3.粒径范围大 | 1.分离精度相对较低 2.不适用于细颗粒 |
浮选 | 表面湿润性差异 | 1.高分离精度 2.适用于细颗粒 3.适应良好 | 1.需要大量的水 2.使用有效试剂 3.需要脱水和干燥设备 |
电选 | 导电性差异 | 1.操作简单,运行成本低 2.节约水资源 3.低环境污染 | 1.湿度要求低 2.充电装置要求高 |
磁选 | 磁性差异 | 1.无二次污染 2.成本低 | 1.分选效率低 2.浪费水资源 |
机械研磨 | 磨削、挤压和碰撞等机械作用 | 1.工艺简单 2.能耗较低 | 1.只适用于粗灰 2.提高粉煤灰的活性有限 |
加压 | 高温、高压 | 1.反应时间短,浸出率高 2.环境友好 | 1.投资大 2.能耗高、高温高压对设备要求高 |
真空 | 在低于正常大气压力的给定空间下 进行实验操作等所需的技术 | 1.加快反应效率 2.缩短反应时间 3.避免环境污染 | 1.技术成本高 2.耗电高 |
化学预处理 预脱硅 | 加氢氧化钠脱去粉煤灰中以无定形 状态存在的SiO2 | 1.尾渣量少 2.能耗较低,设备腐蚀小 | 1.脱硅反应时间不宜过长 2.经济性、环保性差 |
焙烧 | 高温破坏晶相稳定结构 | 1.操作简单 2.能耗低,生产环境好 | 对环境造成二次污染 |
微波 | 分子极化 | 1.选择性加热,快速加热,热转化 效率高,均匀加热 2.环境友好 | 1.微波加热速率过快导致样品内部 结构破坏 2.影响因素很多,过程不易控制 |
超声波 | 机械效应、空化作用、热效应 | 1.提取时间短,提取产率高 2.操作简单,设备维护、保养方便 | 1.设备大型化,造价高,噪声大, 能耗高 2.超声波探头表面的老化会改变 提取效率 |
表面活性剂 | 界面吸附、润湿作用、增溶作用、分散作用 | 1.增加提取效率,缩短提取时间 2.降低成本 3.优化有效组分 4.安全环保 | 局限性比较大,多采用表面活性剂 与其他技术联合 |
生物预处理 微生物 | 破坏粉煤灰表面结构 | 1.低能耗、低成本 2.环境友好 | 提取缓慢 |
1 | Ding J, Ma S, Shen S, et al. Research and industrialization progress of recovering alumina from fly ash: a concise review[J]. Waste Management, 2017, 60: 375-387. |
2 | 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104-111. |
Xu S, Yang J L, Ma S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 104-111. | |
3 | 李海生, 温晓龙, 陈英华, 等. 粉煤灰电选脱炭技术的研究现状及展望[J]. 选煤技术, 2018(6): 1-7. |
Li H S, Wen X L, Chen Y H, et al. State-of-the-art and perspective of the research work on the technology for triboelectrostatic separation of carbon from fly ash[J].Coal Preparation Technology, 2018(6): 1-7. | |
4 | 张祥成, 孟永彪. 浅析中国粉煤灰的综合利用现状[J]. 无机盐工业, 2020, 52(2): 1-5. |
Zhang X C, Meng Y B. Brief analysis on present situation of comprehensive utilization of fly ash in China[J]. Inorganic Chemicals Industry, 2020, 52(2): 1-5. | |
5 | 李琴, 杨岳斌, 刘君, 等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理, 2022(1): 29-34. |
Li Q, Yang Y B, Liu J, et al. Present status and prospect of fly ash utilization in China[J]. Energy Research and Management, 2022(1): 29-34. | |
6 | Wang C, Xu G G, Gu X Y, et al. High value-added applications of coal fly ash in the form of porous materials: a review[J]. Ceramics International, 2021, 47(16): 22302-22315. |
7 | 王苗, 郭彦霞, 程芳琴. 粉煤灰活化提取铝铁的研究[J]. 科技创新与生产力, 2012(1): 91-94. |
Wang M, Guo Y X, Cheng F Q. Research on drawing Al and Fe from pulverized fuel ash[J]. Sci-Tech Innovation and Productivity, 2012(1): 91-94. | |
8 | Wang N N, Sun X Y, Zhao Q, et al. Leachability and adverse effects of coal fly ash: a review[J]. Journal of Hazardous Materials, 2020, 396: 122725. |
9 | 徐涛, 兰海平, 杨超, 等. 粉煤灰物理化学性质对比分析研究[J]. 无机盐工业, 2018, 50(7): 65-68. |
Xu T, Lan H P, Yang C, et al. Comparative research on physical and chemical properties of coal ash[J]. Inorganic Chemicals Industry, 2018, 50(7): 65-68. | |
10 | Li S Y, Bo P H, Kang L W, et al. Activation pretreatment and leaching process of high-alumina coal fly ash to extract lithium and aluminum[J]. Metals, 2020, 10(7): 893. |
11 | 王庆平, 陆向阳. 粉末冶金法制备粉煤灰/铝基复合材料的研究[J]. 热加工工艺, 2007, 36(4): 24-25, 45. |
Wang Q P, Lu X Y. Study of fly ash particulate aluminium based composite prepared by powder metallurgy technique[J]. Hot Working Technology, 2007, 36(4): 24-25, 45. | |
12 | 李文清, 邹萍, 池君洲, 等. 用盐酸从循环流化床粉煤灰中浸出氧化铝[J]. 湿法冶金, 2020, 39(2): 110-113. |
Li W Q, Zou P, Chi J Z, et al. Leaching alumina from circulating fluidized bed fly ash with hydrochloric acid [J].Hydrometallurgy of China, 2020, 39(2): 110-113. | |
13 | 冯泽平. 高钙粉煤灰地质聚合物的制备及耐久性研究[J]. 矿产保护与利用, 2018(2): 107-110. |
Feng Z P. Study on Preparation and durability of high-calcium fly ash based geopolymer[J]. Conservation and Utilization of Mineral Resources, 2018(2): 107-110. | |
14 | 唐志华, 呼和涛力, 郭华芳, 等. 宁夏工业固废处置与资源化利用战略研究[J]. 中国煤炭, 2021, 47(6): 40-52. |
Tang Z H, Hu H T L, Guo H F, et al. Strategic study on industrial solid waste disposal and resource utilization in Ningxia[J]. China Coal, 2021, 47(6): 40-52. | |
15 | Lv Q F, Wang Z S, Gu L Y, et al. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer[J]. Journal of Central South University, 2020, 27(6): 1691-1702. |
16 | 冯培峰. 电厂粉煤灰高值化利用现状与最新进展[J]. 中国资源综合利用, 2020, 38(11): 100-104. |
Feng P F. Progress and development of high value utilization for coal fly ash from power plant[J]. China Resources Comprehensive Utilization, 2020, 38(11): 100-104. | |
17 | 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1-38. |
Qin S J, Xu F, Cui L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1-38. | |
18 | 冯文丽, 吕学斌, 熊健, 等. 粉煤灰高附加值利用研究进展[J]. 无机盐工业, 2021, 53(4): 25-31. |
Feng W L, Lv X B, Xiong J, et al. Research progress of high added value utilization of coal fly ash[J]. Inorganic Chemicals Industry, 2021, 53(4): 25-31. | |
19 | 范文戬. 甘肃某电厂粉煤灰物质组成及铁的赋存状态的矿物学研究[J]. 矿冶, 2002(B07): 274-277. |
Fan W J. Mineralogical study on the material composition of fly ash and the occurrence state of iron in a power plant in Gansu Province[J]. Mining & Metallurgy, 2002(B07): 274-277. | |
20 | 赵永彬. 粉煤灰的矿物学性质研究[J]. 洁净煤技术, 2015, 21(4): 112-116, 121. |
Zhao Y B. Research on mineralogical properties of fly ash[J]. Clean Coal Technology, 2015, 21(4): 112-116, 121. | |
21 | Li S Y, Qin S J, Kang L W, et al. An efficient approach for lithium and aluminum recovery from coal fly ash by pre-desilication and intensified acid leaching processes[J]. Metals, 2017, 7(7): 272. |
22 | Qin S J, Sun Y Z, Li Y H, et al. Coal deposits as promising alternative sources for gallium[J]. Earth-Science Reviews, 2015, 150: 95-101. |
23 | 马鹏传, 李兴, 温振宇, 等. 粉煤灰的活性激发与机理研究进展[J]. 无机盐工业, 2021, 53(10): 28-35. |
Ma P C, Li X, Wen Z Y, et al. Research progress on activation and mechanism of fly ash[J]. Inorganic Chemicals Industry, 2021, 53(10): 28-35. | |
24 | 钱觉时, 施惠生. 粉煤灰的分选技术[J]. 粉煤灰综合利用, 2004, 17(2): 29-33. |
Qian J S, Shi H S. The technology of classfication in fly ash[J]. Fly Ash Comprehensive Utilization, 2004, 17(2): 29-33. | |
25 | 杜杰, 欧阳平, 张贤明, 等. 粉煤灰分选研究进展[J]. 应用化工, 2020, 49(7): 1851-1856. |
Du J, Ouyang P, Zhang X M, et al. Research progress of fly ash separation[J]. Applied Chemical Industry, 2020, 49(7): 1851-1856. | |
26 | 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015. |
Sun H J, Zeng L, Peng T J. Research status and progress of high-value utilization of coal fly ash[J]. Materials Reports, 2021, 35(3): 3010-3015. | |
27 | Xing Y W, Guo F Y, Xu M D, et al. Separation of unburned carbon from coal fly ash: a review[J]. Powder Technology, 2019, 353: 372-384. |
28 | Yang L, Li D L, Zhu Z N, et al. Effect of the intensification of preconditioning on the separation of unburned carbon from coal fly ash[J]. Fuel, 2019, 242: 174-183. |
29 | 毕宁. 物料破碎筛分器在粉煤灰气力输灰系统中的应用[J]. 科技创新与应用, 2017(34): 152-153. |
Bi N. Application of material crushing and sieving machine in fly ash pneumatic conveying system of fly ash[J]. Technology Innovation and Application, 2017(34): 152-153. | |
30 | 薛芳斌, 纪莹璐, 宋慧平, 等. 粉煤灰浮选脱碳试验研究[J]. 粉煤灰综合利用, 2013, 26(4): 14-16, 20. |
Xue F B, Ji Y L, Song H P, et al. Experimental study of flotation of removal carbon in fly ash[J]. Fly Ash Comprehensive Utilization, 2013, 26(4): 14-16, 20. | |
31 | 李海兰, 王凡, 王录峰. 超声波辅助粉煤灰浮选脱碳[J]. 洁净煤技术, 2018, 24(4): 46-49. |
Li H L, Wang F, Wang L F. Ultrasonic-aided flotation decarbonization of fly ash[J]. Clean Coal Technology, 2018, 24(4): 46-49. | |
32 | 胡振文, 郭远新, 林祥玲, 等. 高炭粉煤灰浮选脱炭试验研究[J]. 硅酸盐通报, 2021, 40(3): 907-913. |
Hu Z W, Guo Y X, Lin X L, et al. Experimental research on decarbonization of high-carbon fly ash by flotation[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 907-913. | |
33 | Valeev D. Complex utilisation of ekibastuz brown coal fly ash: iron & carbon separation and aluminum extraction[J]. Journal of Cleaner Production, 2019, 218: 192-201. |
34 | 朱广利, 王浩宇, 李海龙, 等. 粉煤灰脱炭研究进展及展望[J]. 洁净煤技术, 2017, 23(1): 110-114. |
Zhu G L, Wang H Y, Li H L, et al. Methods of fly ash decarbonization[J]. Clean Coal Technology, 2017, 23(1): 110-114. | |
35 | Hwang J Y, Sun X, Li Z. Unburned carbon from fly ash for mercury adsorption (Ⅰ): Separation and characterization of unburned carbon[J]. Journal of Minerals and Materials Characterization and Engineering, 2002, 1(1): 39-60. |
36 | 张权笠. 大方粉煤灰资源化利用研究[D]. 贵州:贵州大学, 2017. |
Zhang Q L. Study on resource utilization of Dafang fly ash[D]. Guiyang: Guizhou University, 2017. | |
37 | Zhang L, Yang F, Tao Y J. Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation[J]. Fuel, 2020, 259: 116282. |
38 | Chen T, Yan B, Li L L, et al. Mineralogy characteristic study and exploration on the valuable metals enrichment of coal fly ash[J]. Advances in Polymer Technology, 2019, 2019: 1839450. |
39 | 吴海洋, 张军, 张灿强, 等. 粉煤灰传导感应分选试验研究[J]. 洁净煤技术, 2017, 23(3): 100-105. |
Wu H Y, Zhang J, Zhang C Q, et al. Experimental study on conduction induction separation of fly ash[J]. Clean Coal Technology, 2017, 23(3): 100-105. | |
40 | 张灿强. 不同种类粉煤灰特性的实验研究[D]. 南京:东南大学, 2017. |
Zhang C Q. Experimental study on characteristics of different kinds of fly ash[D]. Nanjing: Southeast University, 2017. | |
41 | 申有悦, 邵怀志, 杨晓, 等. 摩擦静电分选技术研究与应用进展[J]. 矿冶工程, 2022, 42(5): 44-50. |
Shen Y Y, Shao H Z, Yang X, et al. Progress in research and application of triboelectrostatic separation technology[J]. Mining and Metallurgical Engineering, 2022, 42(5): 44-50. | |
42 | Tao Y J, Zhang L, Tao D P, et al. Effects of key factors of rotary triboelectrostatic separator on efficiency of fly ash decarbonization[J]. International Journal of Mining Science and Technology, 2017, 27(6): 1037-1042. |
43 | 于凤芹, 章新喜, 段代勇, 等. 粉煤灰摩擦电选脱碳的试验研究[J]. 选煤技术, 2008(1): 8-11, 75. |
Yu F Q, Zhang X X, Duan D Y, et al. Test and research on decarbonization of fly ash by friction electric separation[J].Coal Preparation Technology, 2008(1): 8-11, 75. | |
44 | Li C Y, Zhang X X, Li H S, et al. Influence of particle size range on coal fly ash triboelectrostatic separation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021,DOI:10.1080/15567036.2021.1928333 . |
45 | 孙少博, 张永锋, 崔景东, 等. 粉煤灰高值化利用中的除铁工艺[J]. 化工新型材料, 2015, 43(1): 223-225. |
Sun S B, Zhang Y F, Cui J D, et al. Process of iron removal from fly ash in use of high value[J]. New Chemical Materials, 2015, 43(1): 223-225. | |
46 | 刘汇东, 宋红见, 魏建朋, 等. 珞璜电厂珞璜电厂粉煤灰微珠的精细化分选[J]. 科技导报, 2015, 33(4): 49-55. |
Liu H D, Song H J, Wei J P, et al. Experiments on fine separation of microspheres from fly ash of Luohuang coal-fired power plant[J]. Science & Technology Review, 2015, 33(4): 49-55. | |
47 | 王小芳. 基于CFB粉煤灰提铝的铁杂质分离基础研究[D]. 太原: 山西大学, 2020. |
Wang X F. Study on the separation of iron impurities based on the extraction of aluminum from CFB fly ash [D]. Taiyuan: Shanxi University, 2020. | |
48 | 王震, 黄珍丽, 王培根, 等. 电厂粉煤灰活化工艺参数的研究[J]. 应用化工, 2016, 45(6): 1100-1102, 1106. |
Wang Z, Huang Z L, Wang P G, et al. Study on process parameters for activating power plant fly ash[J]. Applied Chemical Industry, 2016, 45(6): 1100-1102, 1106. | |
49 | Kumar S, Mucsi G, Kristály F, et al. Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers[J]. Advanced Powder Technology, 2017, 28(3): 805-813. |
50 | Shokuhfar A, Nasiri-Tabrizi B. Nanostructured materials prepared by mechanical alloying and mechanochemical process[J]. Defect and Diffusion Forum, 2009, 817: 283-286. |
51 | 吴艳, 翟玉春, 尹振, 等. 粉煤灰酸法提取氧化铝过程的机械研磨活化研究[J]. 矿冶工程, 2009, 29(1): 71-73, 77. |
Wu Y, Zhai Y C, Yin Z, et al. Study on mechanical grinding activation fly ash and acid leaching of aluminium oxide[J]. Mining and Metallurgical Engineering, 2009, 29(1): 71-73, 77. | |
52 | Wen Z P, Zhou C C, Pan J H, et al. Recovery of rare-earth elements from coal fly ash via enhanced leaching[J]. International Journal of Coal Preparation and Utilization, 2022, 42(7): 2041-2055. |
53 | 王恒辉. 硫化铜精矿加压浸出降酸工艺及试验分析[J]. 中国有色冶金, 2021, 50(5): 24-27, 39. |
Wang H H. Deacidification technology of copper sulfide concentrate pressure leaching and test analysis[J]. China Nonferrous Metallurgy, 2021, 50(5): 24-27, 39. | |
54 | 王海北, 蒋开喜, 王玉芳, 等. 重金属加压浸出技术现状及展望[J]. 有色金属(冶炼部分), 2021(9): 1-11. |
Wang H B, Jiang K X, Wang Y F, et al. Status and prospect on pressure leaching technologies for heavy metals[J]. Nonferrous Metals(Extractive Metallurgy), 2021(9): 1-11. | |
55 | 张驰, 邹小平, 黄胜. 加压浸出技术在回收铜冶炼废渣中有价金属的应用[J]. 云南化工, 2021, 48(7): 110-112. |
Zhang C, Zou X P, Huang S. Pressure leaching technology for recovering valuable metals from copper smelting slag[J]. Yunnan Chemical Technology, 2021, 48(7): 110-112. | |
56 | 王海北, 李贺, 王玉芳. 稀贵金属加压浸出技术现状及展望[J]. 有色金属(冶炼部分), 2021(6): 1-9. |
Wang H B, Li H, Wang Y F. Status and prospect on pressure leaching technologies for rare and precious metals[J]. Nonferrous Metals(Extractive Metallurgy), 2021(6): 1-9. | |
57 | 吴成友, 余红发, 郑利娜, 等. 加压酸浸法提取粉煤灰中的Al2O3和Fe2O3 [J]. 化工环保, 2012, 32(2): 173-176. |
Wu C Y, Yu H F, Zheng L N, et al. Acid extraction of Al2O3 and Fe2O3 from fly ash under pressure[J]. Environmental Protection of Chemical Industry, 2012, 32(2): 173-176. | |
58 | 陈硕, 王立久. 酸浸法提取粉煤灰中铝铁及纳米氧化铁的制备[J]. 材料科学与工程学报, 2018, 36(6): 1003-1009. |
Chen S, Wang L J. Preparation of α-Fe2O3 nanoparticles from coal fly ash[J]. Journal of Materials Science and Engineering, 2018, 36(6): 1003-1009. | |
59 | Lv Y L, Chen C Y, Mao Z H. Preparation of alumina from fly ash by sulfuric acid[J]. Advanced Materials Research, 2013, 734/735/736/737: 1551-1554. |
60 | 乔潮. 基于加压碱浸的电厂粉煤灰脱硅过程研究[J]. 山西电力, 2021(4): 66-69. |
Qiao C. Study on desilication process of fly ash in power plants based on pressurized alkali leaching[J]. Shanxi Electric Power, 2021(4): 66-69. | |
61 | 赵爱春, 刘煜金, 张廷安, 等. 粉煤灰硫酸浸出性能研究[J/OL]. 中国有色冶金, 2022, . |
Zhao A C, Liu Y J, Zhang T A. Study on sulfuric acid leaching performance of fly ash[J/OL]. China Nonferrous Metallurgy, 2022,. | |
62 | Wang P, Liu H Y, Zheng F Y, et al. Extraction of aluminum from coal fly ash using pressurized sulfuric acid leaching with emphasis on optimization and mechanism[J]. JOM, 2021, 73(9): 2643-2651. |
63 | Wu C Y, Yu H F, Zhang H F. Extraction of aluminum by pressure acid-leaching method from coal fly ash[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2282-2288. |
64 | Lin M, Liu Y Y, Lei S M, et al. High-efficiency extraction of Al from coal-series kaolinite and its kinetics by calcination and pressure acid leaching[J]. Applied Clay Science, 2018, 161: 215-224. |
65 | 杜艳霞, 黄岩, 池君洲, 等. 外场技术在粉煤灰综合利用中的应用[J]. 露天采矿技术, 2013, 28(3): 80-82, 84. |
Du Y X, Huang Y, Chi J Z, et al. Application of outfield technique of pulverized coal ash comprehensive utilization[J]. Opencast Mining Technology, 2013, 28(3): 80-82, 84. | |
66 | Zhang L G, Xu Z M. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash[J]. Journal of Hazardous Materials, 2016, 312: 28-36. |
67 | Zhang L G, Xu Z M. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash[J]. Journal of Hazardous Materials, 2017, 321: 18-27. |
68 | 周保成. 粉煤灰微波强化活化及机理研究[D]. 昆明: 昆明理工大学, 2019. |
Zhou B C. Study on microwave enhanced activation of fly ash and its mechanism [D]. Kunming: Kunming University of Science and Technology, 2019. | |
69 | Xue Y, Yu W Z, Mei J, et al. A clean process for alumina extraction and ferrosilicon alloy preparation from coal fly ash via vacuum thermal reduction[J]. Journal of Cleaner Production, 2019, 240: 118262. |
70 | Kou L Y, Zhou J W, Yang L, et al. Effects of vacuum conditions on activation of high-alumina fly ash roasted using conventional and microwave heating[J]. Materials Research Express, 2020, 7(2): 025515. |
71 | 张西民. 高铝粉煤灰预脱硅-硫酸浸出法制取氧化铝熟料窑烟气净化回收工艺探讨[J]. 轻金属, 2014(3): 20-23. |
Zhang X M. Discussion on purifying and recovery process of the flue gas from the alumina sinter kiln in high alumina fly ash pre-desilication sulfuric acid leaching method[J]. Light Metals, 2014(3): 20-23. | |
72 | 高荣, 郭建民, 云冬冬, 等. 电厂粉煤灰提取氧化铝的发展前景[J]. 煤炭加工与综合利用, 2013(2): 65-69. |
Gao R, Guo J M, Yun D D, et al. Development prospect of extracting alumina from fly ash of power plant[J]. Coal Processing & Comprehensive Utilization, 2013(2): 65-69. | |
73 | 许学斌, 朱应宝, 张生, 等. 高铝粉煤灰预脱硅工艺优化的研究[J]. 轻金属, 2013(7): 18-21. |
Xu X B, Zhu Y B, Zhang S, et al. Research on optimizing process of pre-desilication of high-aluminum fly ash[J].Light Metals, 2013(7): 18-21. | |
74 | Guo Y X, Zhao Z S, Zhao Q, et al. Novel process of alumina extraction from coal fly ash by pre-desilicating—Na2CO3 activation—acid leaching technique[J]. Hydrometallurgy, 2017, 169: 418-425. |
75 | 祁光霞, 梁振凯, 雷雪飞, 等. 预脱硅-Na2CO3焙烧-酸浸工艺提取粉煤灰中的氧化铝[J]. 高校化学工程学报, 2016, 30(3): 673-679. |
Qi G X, Liang Z K, Lei X F, et al. Extraction of alumina from coal fly ash by a predesilication-Na2CO3 sintering-acid leaching process[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(3): 673-679. | |
76 | 蒋周青, 马鸿文, 杨静, 等. 低钙烧结法从高铝粉煤灰脱硅产物中提取氧化铝[J]. 轻金属, 2013(11): 9-13. |
Jiang Z Q, Ma H W, Yang J, et al. Extraction of alumina from high-alumina fly ash desilicated residue by low-lime sintering process[J]. Light Metals, 2013(11): 9-13. | |
77 | 王百年, 宛强, 阳春娇, 等. 复合助剂活化粉煤灰提铝工艺条件研究[J]. 轻金属, 2019(1): 18-24. |
Wang B N, Wan Q, Yang C J, et al. Study on the extracting conditions of aluminum from fly ash using compound activator[J]. Light Metals, 2019(1): 18-24. | |
78 | 马钊. 灰场粉煤灰提取氧化铝和白炭黑[D]. 淮南: 安徽理工大学, 2015. |
Ma Z. Extraction of alumina and silica from ash filed fly ash[D]. Huainan: Anhui University of Science & Technology, 2015. | |
79 | 赵瑜, 程文婷, 程芳琴. 碳酸钠助熔粉煤灰提取Al2O3的研究[J]. 中国科技论文, 2015, 10(21): 2513-2517. |
Zhao Y, Cheng W T, Cheng F Q. Study on the extraction of Al2O3 from fly ash calcination by sodium carbonate[J]. China Sciencepaper, 2015, 10(21): 2513-2517. | |
80 | 赵亚娟, 王晓端, 韩昕, 等. NaOH高温活化粉煤灰的理论分析及实验研究[J]. 硅酸盐通报, 2016, 35(11): 3697-3703. |
Zhao Y J, Wang X D, Han X, et al. Theoretical analysis and experimental research on activation of fly ash by NaOH at high temperature[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3697-3703. | |
81 | 陈杰, 高尚勇, 李思琼, 等. 高铝粉煤灰的活化[J]. 硅酸盐通报, 2016, 35(2): 593-597. |
Chen J, Gao S Y, Li S Q, et al. Activation of high-alumina fly ash[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(2): 593-597. | |
82 | Guo Y X, Li Y Y, Cheng F Q, et al. Role of additives in improved thermal activation of coal fly ash for alumina extraction[J]. Fuel Processing Technology, 2013, 110: 114-12. |
83 | 刘能生, 彭金辉, 张利波, 等. 高铝粉煤灰硫酸铵与碳酸钠焙烧活化对比研究[J]. 昆明理工大学学报(自然科学版), 2016, 41(1): 1-6. |
Liu N S, Peng J H, Zhang L B, et al. Comparative study of ammonium sulfate and sodium carbonate roasting of high aluminum coal fly ash activation[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2016, 41(1): 1-6. | |
84 | 梁振凯, 雷雪飞, 孙应龙, 等. 氯化钙焙烧法提取粉煤灰中的氧化铝[J]. 中国环境科学, 2013, 33(9): 1601-1606. |
Liang Z K, Lei X F, Sun Y L, et al. Extraction of alumina from coal fly ash by calcination with calcium chloride process[J]. China Environmental Science, 2013, 33(9): 1601-1606. | |
85 | 赵泽森, 高建明, 郭彦霞, 等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究, 2018, 31(3): 569-576. |
Zhao Z S, Gao J M, Guo Y X, et al. Acid-alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences, 2018, 31(3): 569-576. | |
86 | 隋丽丽, 翟玉春, 孙莹莹. 粉煤灰硫酸氢铵焙烧法提取氧化铝的研究[J]. 有色金属(冶炼部分), 2017(4): 20-24. |
Sui L L, Zhai Y C, Sun Y Y. Study on exaction of Al2O3 from fly ash by ammonium bisulfate roasting[J]. Nonferrous Metals(Extractive Metallurgy), 2017(4): 20-24. | |
87 | Wang R C, Zhai Y C, Ning Z Q. Thermodynamics and kinetics of alumina extraction from fly ash using an ammonium hydrogen sulfate roasting method[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(2): 144-149. |
88 | 葛欣, 隋丽丽, 尚志航, 等. 硫酸氢铵焙烧粉煤灰混合焙烧反应动力学研究[J]. 轻金属, 2017(3): 14-17. |
Ge X, Sui L L, Shang Z H, et al. Reaction kinetics of ammonium hydrogen sulfate roasting fly ash[J]. Light Metals, 2017(3): 14-17. | |
89 | Rezaei H, Shafaei S Z, Abdollahi H, et al. A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: sodium salts roasting and organic acids leaching[J]. Fuel, 2022, 312: 122844. |
90 | Tang M C, Zhou C C, Pan J H, et al. Study on extraction of rare earth elements from coal fly ash through alkali fusion-acid leaching[J]. Minerals Engineering, 2019, 136: 36-42. |
91 | 林伟, 王培根, 王震, 等. 粉煤灰焙烧-酸浸提取氧化铝工艺[J]. 安徽化工, 2016, 42(2): 26-29. |
Lin W, Wang P G, Wang Z, et al. Process of coal fly ash roasting and acid leaching[J]. Anhui Chemical Industry, 2016, 42(2): 26-29. | |
92 | 满剑奇, 程立媛, 李文慧, 等. 用高温焙烧-盐酸浸出法从粉煤灰中浸出镓[J]. 湿法冶金, 2022, 41(1): 14-19. |
Man J Q, Cheng L Y, Li W H, et al. Leaching of gallium from fly ash by high temperature roasting-hydrochloric acid leaching method[J]. Hydrometallurgy of China, 2022, 41(1): 14-19. | |
93 | Huang J, Wang Y B, Zhou G X, et al. Investigation on the effect of roasting and leaching parameters on recovery of gallium from solid waste coal fly ash[J]. Metals, 2019, 9(12): 1251. |
94 | 雷鹰, 李雨, 彭金辉, 等. 微波选择性加热在矿冶过程中的应用进展[J]. 材料导报, 2011, 25(15): 119-122. |
Lei Y, Li Y, Peng J H, et al. Application of microwave selective heating on mining and metallurgy processing[J]. Materials Review, 2011, 25(15): 119-122. | |
95 | 薛军, 王伟, 汪群慧. 微波加热在重金属浸出中的应用[J]. 有色金属, 2008(2): 75-80. |
Xue J, Wang W, Wang Q H. Application of microwave heating in heavy metals leaching process[J]. Nonferrous Metals, 2008(2): 75-80. | |
96 | 宋增凯, 陈菓, 彭金辉, 等. 微波加热技术在典型冶金工艺中的应用研究进展[J]. 矿冶, 2014, 23(3): 57-63. |
Song Z K, Chen G, Peng J H, et al. Research progress of application of microwave heating in typical metallurgical technology[J]. Mining and Metallurgy, 2014, 23(3): 57-63. | |
97 | Hu Q, He Y N, Wang F, et al. Microwave technology: a novel approach to the transformation of natural metabolites[J]. Chinese Medicine, 2021, 16(1): 87. |
98 | 李磊, 陈雪芹, 韩龙, 等. 微波活化粉煤灰及其应用研究进展[J]. 粉煤灰综合利用, 2011, 24(5): 53-54, 57. |
Li L, Chen X Q, Han L, et al. Microwave activate fly ash and the research progress of application[J]. Fly Ash Comprehensive Utilization, 2011, 24(5): 53-54, 57. | |
99 | 张寒琦, 金钦汉. 微波化学[J]. 大学化学, 2001(1): 32-36. |
Zhang H Q, Jin Q H. Microwave chemistry[J]. University Chemistry, 2001(1): 32-36. | |
100 | 赵剑宇, 田凯. 微波助溶从粉煤灰提取氧化铝新工艺研究[J]. 无机盐工业, 2005, 37(2): 47-49. |
Zhao J Y, Tian K. Study on extraction of aluminium oxide from fly ash by solubilization of microwave[J]. Inorganic Chemicals Industry, 2005, 37(2): 47-49. | |
101 | 吕早生, 张路平, 帅清昱, 等. 粉煤灰中镓富集与浸出工艺研究[J]. 化学与生物工程, 2014, 31(7): 66-69. |
Lyu Z S, Zhang L P, Shuai Q Y, et al. Study on process of enrichment and leaching of gallium from fly ash[J]. Chemistry & Bioengineering, 2014, 31(7): 66-69. | |
102 | Hu T, Kou L Y, Yang L, et al. Micro-structural evolution of high aluminium fly ash enhanced by microwave heating to accelerate activation reaction process[J]. Powder Technology, 2021, 377: 739-747. |
103 | Ma Y Q. A cleaner approach for recovering Al and Ti from coal fly ash via microwave-assisted baking, leaching, and precipitation[J]. Hydrometallurgy, 2021, 206: 105754. |
104 | Kumar A, Agrawal S, Dhawan N. Processing of coal fly ash for the extraction of alumina values[J]. Journal of Sustainable Metallurgy, 2020, 6(2): 294-306. |
105 | 梁金奎, 刘晓荣, 罗林根, 等. 粉煤灰中有价元素的强化浸出研究[J]. 矿冶工程, 2008, 28(6): 76-79, 83. |
Liang J K, Liu X R, Luo L G, et al. Research on strengthening leaching of the valuable elements in fly ash[J]. Mining and Metallurgical Engineering, 2008, 28(6): 76-79, 83. | |
106 | 符秀锋, 徐本军, 黄彩娟. 微波碱溶法从粉煤灰中浸出硅、铝的试验研究[J]. 湿法冶金, 2014, 33(3): 196-198. |
Fu X F, Xu B J, Huang C J. Alkali dissolution of silicon and aluminum from fly ash by microwave heating[J]. Hydrometallurgy of China, 2014, 33(3): 196-198. | |
107 | 徐梦, 辛志峰, 李婷, 等. 微波碱溶法对粉煤灰中镓浸出效果的影响研究[J]. 轻金属, 2016(6): 16-20. |
Xu M, Xin Z F, Li T, et al. Influence of microwave alkali dissolution method on gallium leaching effect from fly ash[J]. Light Metals, 2016(6): 16-20. | |
108 | Zhang Z Y, Qiao X C, Yu J G. Aluminum release from microwave-assisted reaction of coal fly ash with calcium carbonate[J]. Fuel Processing Technology, 2015, 134: 303-309. |
109 | 李昌伟, 梁杰, 雷泽明, 等. 微波活化焙烧对粉煤灰中钛浸出率的影响[J]. 中国有色冶金, 2015, 44(5): 71-73, 76. |
Li C W, Liang J, Lei Z M, et al. The influence on the leaching rate of titanium as microwave roasting fly ash[J]. China Nonferrous Metallurgy, 2015, 44(5): 71-73, 76. | |
110 | 董卉, 陈娟, 李箫玉, 等. 烧结剂对新疆粉煤灰中锂浸出的作用特性[J]. 化工进展, 2019, 38(3): 1538-1544. |
Dong H, Chen J, Li X Y, et al. The effect of activator on lithium extraction from Xinjiang fly ash[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1538-1544. | |
111 | Liu N S, Peng J H, Zhang L B, et al. Extraction of aluminum from coal fly ash by alkali activation with microwave heating[J]. Journal of Residuals Science & Technology, 2016, 13(S1):S181-S187. |
112 | Chen Y Q, Zhou J W, Zhang L B, et al. Microwave-assisted and regular leaching of germanium from the germanium-rich lignite ash[J]. Green Processing and Synthesis, 2018, 7(6): 538-545. |
113 | 曾祥菲, 舒建成, 王继钦, 等. 超声波强化菱锰矿中锰的浸出[J]. 有色金属(冶炼部分), 2022(2): 8-15. |
Zeng X F, Shu J C, Wang J Q, et al. Ultrasonic-assisted leaching of manganese from rhodochrosite[J]. Nonferrous Metals(Extractive Metallurgy), 2022(2): 8-15. | |
114 | Lim J L, Kim S W, Shin H S, et al. Leaching behavior of lead from ultrasonically treated MSWI fly ash[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(6): 1587-1599. |
115 | 崔维, 易武平, 蔡安. 超声波强化浸出铝灰中氯的机理[J]. 过程工程学报, 2017, 17(4): 757-762. |
Cui W, Yi W P, Cai A. Mechanism of ultrasound-assisted leaching chlorine from aluminum dross[J]. The Chinese Journal of Process Engineering, 2017, 17(4): 757-762. | |
116 | Masoum H G, Rastegar S O, Khamforoush M. Ultrasound‐assisted leaching of vanadium and yttrium from coal ash: optimization, kinetic and thermodynamic study[J]. Chemical Engineering & Technology, 2021, 44(12): 2249-2256. |
117 | Zhou W, Lu X, Qi C C, et al. Utilisation of ultrasonic treatment to improve the soil amelioration property of coal fly ash[J]. Journal of Environmental Management, 2020, 276. |
118 | 焉杰文, 潘德安, 李彬. 超声强化在湿法浸出过程中的应用[J]. 过程工程学报, 2020, 20(11): 1241-1247. |
Yan J W, Pan D A, Li B. Application of ultrasonic intensification in hydrometallurgy leaching process[J]. The Chinese Journal of Process Engineering, 2020, 20(11): 1241-1247. | |
119 | Xiao J, Yuan J, Tian Z, et al. Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis[J]. Ultrasonics Sonochemistry, 2018, 40: 21-29. |
120 | Liu K, Xue J L, Luo W B. Effects of ultrasound on Al2O3 extraction rate during acid leaching process of coal fly ash[M]//EPD Congress 2014. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014: 251-258. |
121 | Luo W, Xue J L, Zhu J, et al. Extracting alumina from coal fly ash with concentrated sulfuric acid sintering and ultrasound aided leaching[M]// EPD Congress 2015. Switzer land: Springer Cham, 2015: 31-38. |
122 | Ju T Y, Jiang J G, Meng Y, et al. An investigation of the effect of ultrasonic waves on the efficiency of silicon extraction from coal fly ash[J]. Ultrasonics Sonochemistry, 2020, 60: 104765. |
123 | Kim J, Park S U. Simultaneous extraction of yttrium and neodymium from fly ash by two-step leaching process with aid of ultrasonic wave[J]. Kepco Journal on Electric Power and Energy, 2021, 7(1): 153-159. |
124 | Rahimi G, Rastegar S O, Rahmani F, et al. Correction: ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids[J]. RSC Advances, 2020, 10(63): 38378. |
125 | 陈青明. 表面活性剂的化学结构和应用研究[J]. 低碳世界, 2021, 11(8): 227-228. |
Chen Q M. Study on chemical structure and application of surfactants[J]. Low Carbon World, 2021, 11(8): 227-228. | |
126 | 韩伟, 刘曦, 班颖. 表面活性剂辅助提取技术及其应用进展[J]. 机电信息, 2010(26): 12-15. |
Han W, Liu X, Ban Y. Surfactant-assisted extraction technology and its application progress[J]. Mechanical and Electrical Information, 2010(26): 12-15. | |
127 | 秦佳, 毛明发, 刘春霖, 等. 表面活性剂对铜矿石浸出的影响研究[J]. 矿冶工程, 2013, 33(5): 115-118. |
Qin J, Mao M F, Liu C L, et al. Study on effect of surfactant on copper ore leaching[J]. Mining and Metallurgical Engineering, 2013, 33(5): 115-118. | |
128 | Ai C M, Sun P P, Wu A X, et al. Accelerating leaching of copper ore with surfactant and the analysis of reaction kinetics[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(3): 274-281. |
129 | 刘存成, 马家玉, 覃远航, 等. 表面活性剂对磷钾伴生矿中钾浸出的影响[J]. 武汉工程大学学报, 2017, 39(6): 536-540. |
Liu C C, Ma J Y, Qin Y H, et al. Effect of surfactants on leaching of potassium from phosphorus-potassium associated ore[J]. Journal of Wuhan Institute of Technology, 2017, 39(6): 536-540. | |
130 | 吴爱祥, 艾纯明, 王贻明, 等. 表面活性剂强化铜矿石浸出[J]. 北京科技大学学报, 2013, 35(6): 709-713. |
Wu A X, Ai C M, Wang Y M, et al. Surfactant accelerating leaching of copper ores[J]. Journal of University of Science and Technology Beijing, 2013, 35(6): 709-713. | |
131 | Liu Y Q, Tian B H, Xiao R L, et al. The bio-activation of pozzolanic activity of circulating fluidized-bed fly ash by Paenibacilllus mucilaginosus [J]. Advanced Powder Technology, 2022, 33(8): 103621. |
132 | Guo Y J, Teng Q, Yang Z, et al. Investigation on bio-desilication process of fly ash based on a self-screened strain of Bacillus amyloliquefaciens and its metabolites[J]. Journal of Biotechnology, 2021, 341: 146-154. |
133 | Park S, Liang Y. Bioleaching of trace elements and rare earth elements from coal fly ash[J]. International Journal of Coal Science & Technology, 2019, 6(1): 74-83. |
[1] | ZHAO Zesen, CUI Li, GUO Yanxia, CHENG Fangqin. Research progress on extraction and recovery of strategic metal gallium from coal fly ash [J]. CIESC Journal, 2021, 72(6): 3239-3251. |
[2] | CUI Li,LI Shasha,GUO Yanxia,ZHANG Xueli,CHENG Fangqin. Research and development of lithium recovery from multi-component complex system of coal fly ash [J]. CIESC Journal, 2020, 71(12): 5388-5399. |
[3] | QI Guangxia, LEI Xuefei, SUN Fangyan, SUN Yinglong, LI Lei, YUAN Chao, WANG Bangda, WANG Yi. Performance and mechanisms of coal fly ash-derived C-S-H on adsorption of U(Ⅵ) [J]. CIESC Journal, 2016, 67(10): 4255-4263. |
[4] | LIU Kang, XUE Jilai, LIU Liang, LUO Wenbo, MIAO Jun, ZHU Jun. Roasting process and non-isothermal kinetics for sulfating roasting of coal fly ash [J]. CIESC Journal, 2015, 66(4): 1337-1343. |
[5] | LIU Zhuannian. Modification of ultra-fine coal fly ash and its thermodynamics of Cr6+ adsorption [J]. , 2008, 27(4): 569-. |
[6] |
SHI Jianwen,CHEN Shaohua,WANG Shumei,XU Guihua.
Progress of modification and application of coal fly ash in water treatment [J]. , 2008, 27(3): 326-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 458
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 616
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||