DNA-NSGA-Ⅱ nonlinear dynamic system modeling approach using RBF neural networks
• 过程系统工程 • Previous Articles Next Articles
TAO Jili; WANG Ning
Online:
Published:
一种DNA-NSGA-Ⅱ RBF网络非线性动态系统建模
陶吉利; 王宁
Abstract:
Based on the operators of DNA computing, a multiobjective nondominated sorted genetic algorithm(DNA-NSGA-Ⅱ)was proposed to optimize the radial basis function (RBF) networkBoth the structure complexity and the approximation performance were optimizedOnce a group of Pareto optimal solutions were derived, the appropriate RBF network could be chosen in terms of the sum of absolute values of the testing errorsSimulation results of a continuous stirred tank reactor (CSTR) and pH neutralization process showed that the proposed method is an efficient black box dynamic modeling approach.
摘要:
基于DNA计算操作算子,提出了一种多目标非支配排序遗传算法,用于实现径向基函数(RBF)网络的优化设计。以RBF网络结构最简、拟合精度最高为优化指标,得到一组Pareto最优解,并根据测试数据的误差绝对值之和最小准则,从Pareto最优解集中筛选出最佳RBF网络。连续搅拌反应釜和pH中和过程建模仿真研究表明,该算法是一种有效的“黑箱”动态建模方法。
TAO Jili; WANG Ning.
陶吉利; 王宁.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/
https://hgxb.cip.com.cn/EN/Y2007/V58/I10/2530