CIESC Journal ›› 2008, Vol. 59 ›› Issue (2): 508-513.
Previous Articles Next Articles
Online:
Published:
张响,童水光,李倩,王利霞,董金虎
Abstract:
Compared with the traditional injection molding, gas-assisted injection molding is more complicated and involves more process parameters.Process optimization becomes more difficult.Artificial neural network(ANN) and genetic algorithm(GA) were integrated to optimize the process for maximizing the gas penetration length.The simulation and experiment results were in good agreement.
Key words: 软计算, 气辅成型, 人工神经网络, 遗传算法, 工艺优化
软计算,
摘要:
气体辅助注射成型由于气体的引入使工艺更为复杂,增加了工艺变量,参数选取更为困难。本文基于CAE数值模拟试验结果,采用软计算方法,集成人工神经网络和生物进化遗传算法优化成型工艺,实现了气体辅助注射成型试验样品气体穿透长度的最大化。数值模拟与试验结果一致
关键词: 软计算, 气辅成型, 人工神经网络, 遗传算法, 工艺优化
张响, 童水光, 李倩, 王利霞, 董金虎. 应用软计算优化气辅注射成型工艺 [J]. 化工学报, 2008, 59(2): 508-513.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/
https://hgxb.cip.com.cn/EN/Y2008/V59/I2/508
A new DNA genetic algorithm and its application in parameter estimation
ZHANG Chunxiao;ZHANG Tao
Oil holdup modeling of oil-water two-phase flow using thermal method based on LSSVM and GA
GAO Junjie;LI Huiquan;ZHANG Yi;FEI Weiyang
Clean synthesis of methyl N-phenyl carbamate through coupling route with catalyst Bu2SnO
Multi-objective optimization of PID controller parameters for unstable FOPDT plants