CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6268-6276.DOI: 10.11949/0438-1157.20250647
• Thermodynamics • Previous Articles Next Articles
Hao LYU(
), Wenhao MAI, Yayuan ZHENG(
), Bo XING(
), Huaiming DU(
)
Received:2025-06-16
Revised:2025-07-30
Online:2026-01-23
Published:2025-12-31
Contact:
Yayuan ZHENG, Bo XING, Huaiming DU
通讯作者:
郑雅元,邢波,杜怀明
作者简介:吕豪(1998—),男,硕士研究生,17683133102@163.com
基金资助:CLC Number:
Hao LYU, Wenhao MAI, Yayuan ZHENG, Bo XING, Huaiming DU. Crystallization kinetics of ammonium dihydrogen phosphate in water-ethylene glycol systems[J]. CIESC Journal, 2025, 76(12): 6268-6276.
吕豪, 麦文浩, 郑雅元, 邢波, 杜怀明. 磷酸二氢铵在水-乙二醇体系中的结晶动力学[J]. 化工学报, 2025, 76(12): 6268-6276.
Add to citation manager EndNote|Ris|BibTeX
| T/K | MAP溶解度[ (EG∶H2O=2∶8) | 搅拌速率/(r/min) | 溶剂剂量/ml |
|---|---|---|---|
| 313.2 | 2.328 | 200~400 | 诱导期实验:200 动力学实验:400 |
| 318.2 | 2.820 | ||
| 323.2 | 3.428 | ||
| 328.2 | 4.036 | ||
| 333.2 | 4.440 |
Table 1 Solubilities of MAP in binary systems and experimental parameters
| T/K | MAP溶解度[ (EG∶H2O=2∶8) | 搅拌速率/(r/min) | 溶剂剂量/ml |
|---|---|---|---|
| 313.2 | 2.328 | 200~400 | 诱导期实验:200 动力学实验:400 |
| 318.2 | 2.820 | ||
| 323.2 | 3.428 | ||
| 328.2 | 4.036 | ||
| 333.2 | 4.440 |
| T/K | ΔG* ×1021/J | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 104.303 | 26.5896 | 12.0467 | 6.9056 | 4.5026 | 3.1847 | 2.3824 | |
| 318.2 | 102.944 | 26.2431 | 11.8898 | 6.8156 | 4.4439 | 3.1432 | 2.3513 | |
| 323.2 | 101.717 | 25.9304 | 11.7481 | 6.7344 | 4.391 | 3.1057 | 2.3233 | |
| 328.2 | 92.1996 | 23.5041 | 10.6488 | 6.1043 | 3.9801 | 2.8151 | 2.1059 | |
| 333.2 | 65.8046 | 16.7753 | 7.6003 | 4.3567 | 2.8407 | 2.0092 | 1.503 | |
Table 2 The relationship between temperature, supersaturation ratio, and critical nucleation free energy
| T/K | ΔG* ×1021/J | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 104.303 | 26.5896 | 12.0467 | 6.9056 | 4.5026 | 3.1847 | 2.3824 | |
| 318.2 | 102.944 | 26.2431 | 11.8898 | 6.8156 | 4.4439 | 3.1432 | 2.3513 | |
| 323.2 | 101.717 | 25.9304 | 11.7481 | 6.7344 | 4.391 | 3.1057 | 2.3233 | |
| 328.2 | 92.1996 | 23.5041 | 10.6488 | 6.1043 | 3.9801 | 2.8151 | 2.1059 | |
| 333.2 | 65.8046 | 16.7753 | 7.6003 | 4.3567 | 2.8407 | 2.0092 | 1.503 | |
| T/K | i* | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2437.66 | 313.76 | 95.68 | 41.53 | 21.86 | 13.01 | 8.41 | |
| 318.2 | 2368.08 | 304.8 | 92.95 | 40.34 | 21.24 | 12.63 | 8.17 | |
| 323.2 | 2303.66 | 296.51 | 90.42 | 39.24 | 20.66 | 12.29 | 7.95 | |
| 328.2 | 2056.29 | 264.67 | 80.71 | 35.03 | 18.44 | 10.97 | 7.1 | |
| 333.2 | 1445.59 | 186.07 | 56.74 | 24.63 | 12.97 | 7.71 | 4.99 | |
Table 3 The relationship between temperature, supersaturation ratio, and critical nucleus size
| T/K | i* | |||||||
|---|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2437.66 | 313.76 | 95.68 | 41.53 | 21.86 | 13.01 | 8.41 | |
| 318.2 | 2368.08 | 304.8 | 92.95 | 40.34 | 21.24 | 12.63 | 8.17 | |
| 323.2 | 2303.66 | 296.51 | 90.42 | 39.24 | 20.66 | 12.29 | 7.95 | |
| 328.2 | 2056.29 | 264.67 | 80.71 | 35.03 | 18.44 | 10.97 | 7.1 | |
| 333.2 | 1445.59 | 186.07 | 56.74 | 24.63 | 12.97 | 7.71 | 4.99 | |
| T/K | r*/Å | ||||||
|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | |
| 313.2 | 45.49 | 22.97 | 15.46 | 11.7 | 9.45 | 7.95 | 6.88 |
| 318.2 | 44.8 | 22.62 | 15.23 | 11.53 | 9.31 | 7.83 | 6.77 |
| 323.2 | 44.2 | 22.32 | 15.02 | 11.37 | 9.18 | 7.72 | 6.68 |
| 328.2 | 42.45 | 21.43 | 14.43 | 10.92 | 8.82 | 7.42 | 6.42 |
| 333.2 | 37.68 | 19.02 | 12.8 | 9.69 | 7.83 | 6.58 | 5.69 |
Table 4 The relationship between temperature, supersaturation ratio, and critical nucleation free energy
| T/K | r*/Å | ||||||
|---|---|---|---|---|---|---|---|
| 1.02 | 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | |
| 313.2 | 45.49 | 22.97 | 15.46 | 11.7 | 9.45 | 7.95 | 6.88 |
| 318.2 | 44.8 | 22.62 | 15.23 | 11.53 | 9.31 | 7.83 | 6.77 |
| 323.2 | 44.2 | 22.32 | 15.02 | 11.37 | 9.18 | 7.72 | 6.68 |
| 328.2 | 42.45 | 21.43 | 14.43 | 10.92 | 8.82 | 7.42 | 6.42 |
| 333.2 | 37.68 | 19.02 | 12.8 | 9.69 | 7.83 | 6.58 | 5.69 |
| T/K | J×10-27/(nuclei/(s·m3)) | ||||||
|---|---|---|---|---|---|---|---|
| 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2.1273 | 61.566 | 202.3061 | 352.7781 | 478.5765 | 576.2051 | |
| 318.2 | 2.5357 | 66.6645 | 211.7466 | 363.4264 | 488.7491 | 585.3431 | |
| 323.2 | 2.9834 | 71.761 | 220.8801 | 373.5723 | 498.3608 | 593.9334 | |
| 328.2 | 5.5704 | 95.224 | 259.7662 | 415.2352 | 537.0595 | 628.1081 | |
| 333.2 | 26.0219 | 191.448 | 387.6566 | 539.0858 | 645.9572 | 721.1351 | |
Table 5 Relationship between supersaturation ratio and nucleation rate in homogeneous nucleation
| T/K | J×10-27/(nuclei/(s·m3)) | ||||||
|---|---|---|---|---|---|---|---|
| 1.04 | 1.06 | 1.08 | 1.10 | 1.12 | 1.14 | ||
| 313.2 | 2.1273 | 61.566 | 202.3061 | 352.7781 | 478.5765 | 576.2051 | |
| 318.2 | 2.5357 | 66.6645 | 211.7466 | 363.4264 | 488.7491 | 585.3431 | |
| 323.2 | 2.9834 | 71.761 | 220.8801 | 373.5723 | 498.3608 | 593.9334 | |
| 328.2 | 5.5704 | 95.224 | 259.7662 | 415.2352 | 537.0595 | 628.1081 | |
| 333.2 | 26.0219 | 191.448 | 387.6566 | 539.0858 | 645.9572 | 721.1351 | |
| T/K | b | R2 | γ/(J/m2) | f |
|---|---|---|---|---|
| 313.2 | 0.00946 | 0.95675 | 1.2033×10-3 | 0.3307 |
| 318.2 | 0.00919 | 0.97348 | 1.2243×10-3 | 0.3275 |
| 323.2 | 0.00894 | 0.91457 | 1.2427×10-3 | 0.3245 |
| 328.2 | 0.00798 | 0.95457 | 1.2216×10-3 | 0.3124 |
| 333.2 | 0.00561 | 0.92757 | 1.1067×10-3 | 0.2778 |
Table 6 Nucleation parameters
| T/K | b | R2 | γ/(J/m2) | f |
|---|---|---|---|---|
| 313.2 | 0.00946 | 0.95675 | 1.2033×10-3 | 0.3307 |
| 318.2 | 0.00919 | 0.97348 | 1.2243×10-3 | 0.3275 |
| 323.2 | 0.00894 | 0.91457 | 1.2427×10-3 | 0.3245 |
| 328.2 | 0.00798 | 0.95457 | 1.2216×10-3 | 0.3124 |
| 333.2 | 0.00561 | 0.92757 | 1.1067×10-3 | 0.2778 |
| [1] | 党亚固, 林晶, 费德君, 等. 磷酸二氢铵结晶影响因素研究[J]. 化学工程, 2010, 38(2): 18-21. |
| Dang Y G, Lin J, Fei D J, et al. Effect factors of monoammonium phosphate crystallization process[J]. Chemical Engineering, 2010, 38(2): 18-21. | |
| [2] | 陈铭, 娄伦武, 卓知杰, 等. 湿法磷酸净化生产工业级磷酸一铵的工艺技术现状[J]. 化肥工业, 2019, 46(1): 5-7, 38. |
| Chen M, Lou L W, Zhuo Z J, et al. Current status of process technology for production of industrial grade monoammonium phosphate by wet phosphoric acid purification[J]. Chemical Fertilizer Industry, 2019, 46(1): 5-7, 38. | |
| [3] | 程岳山, 张翠娟. 乙醇/水二元混合物结构性质的分子动力学模拟[J]. 泰山医学院学报, 2007, 28(4): 263-266. |
| Cheng Y S, Zhang C J. Molecular dynamics simulation of ethanol/water mixture for structure properties[J]. Journal of Taishan Medical College, 2007, 28(4): 263-266. | |
| [4] | 范诗梦. 高氯酸钠结晶过程研究[D]. 南昌: 南昌大学, 2024. |
| Fan S M. Study on the crystallization process of sodium perchlorate[D]. Nanchang: Nanchang University, 2024. | |
| [5] | Hao L, Mai W H, Zheng Y Y, et al. Study on the crystallization thermodynamics of ammonium dihydrogen phosphate in H2O-ethylene glycol binary system[J]. Russian Journal of Physical Chemistry A, 2025, 99(7): 1487-1493. |
| [6] | 王灿灿, 郑丹, 胡晓敏, 等. 流化床结晶器中耦合破碎机理的氯化钠晶体成核动力学研究[J]. 山西化工, 2021, 41(1): 13-17. |
| Wang C C, Zheng D, Hu X M, et al. Study on the nucleation kinetics of sodium chloride crystal in fluidized bed crystallizer[J]. Shanxi Chemical Industry, 2021, 41(1): 13-17. | |
| [7] | Akusevich A, Pecušová B, Prnová A, et al. Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(19): 10999-11012. |
| [8] | Fang L H, Fang S D, Zhang S W, et al. Non-isothermal crystallization kinetics of polyvinylidene fluoride (PVDF)/microcrystalline graphite (MCG) composites[J]. Journal of Macromolecular Science, Part B, 2022, 61(9): 1008-1023. |
| [9] | Liu S F, Sun Q, Asselin E, et al. Crystallization kinetics of large-sized columnar α-hemihydrate gypsum by reaction of waste CaCl2 and Al2(SO4)3 without crystal modifiers[J]. Journal of Crystal Growth, 2022, 596: 126817. |
| [10] | 龚俊波, 孙杰, 王静康. 面向智能制造的工业结晶研究进展[J]. 化工学报, 2018, 69(11): 4505-4517. |
| Gong J B, Sun J, Wang J K. Research progress of industrial crystallization towards intelligent manufacturing[J]. CIESC Journal, 2018, 69(11): 4505-4517. | |
| [11] | Liu S N, Ge J C, Ying H, et al. In situ scattering studies of crystallization kinetics in a phase-separated Zr-Cu-Fe-Al bulk metallic glass[J]. Acta Metallurgica Sinica, 2022, 35(1): 103-114. |
| [12] | Jain N, Jagtap P, Bower A, et al. Separating nucleation from growth kinetics of Sn whiskers using thermal pretreatment followed by mechanical loading[J]. Journal of Electronic Materials, 2025, 54(4): 2618-2627. |
| [13] | 刘乾. FOX-7冷却结晶机理及晶体形貌调控技术研究[D]. 太原: 中北大学, 2021. |
| Liu Q. Study on cooling crystallization mechanism and crystal morphology control technology of FOX-7[D]. Taiyuan: North University of China, 2021. | |
| [14] | Zheng D, Xu M L, Wang J, et al. Nonisothermal crystallization kinetics of potassium chloride produced by stirred crystallization[J]. Journal of Crystal Growth, 2023, 603: 127035. |
| [15] | Cao S T, Zhang Y F, Zhang Y. Nucleation and morphology of monosodium aluminate hydrate from concentrated sodium aluminate solutions[J]. Crystal Growth & Design, 2010, 10(4): 1605-1610. |
| [16] | Kuldipkumar A, Kwon G S, Zhang G G Z. Determining the growth mechanism of tolazamide by induction time measurement[J]. Crystal Growth & Design, 2007, 7(2): 234-242. |
| [17] | Nagy Z K, Fujiwara M, Woo X Y, et al. Determination of the kinetic parameters for the crystallization of paracetamol from water using metastable zone width experiments[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1245-1252. |
| [18] | Liu X J, Xu D, Ren M J, et al. An examination of the growth kinetics of L-arginine trifluoroacetate (LATF) crystals from induction period and atomic force microscopy investigations[J]. Crystal Growth & Design, 2010, 10(8): 3442-3447. |
| [19] | Yu J, Li A, Chen X C, et al. Experimental determination of metastable zone width, induction period, and primary nucleation kinetics of cytidine 5′-monophosphate disodium salt in an ethanol-aqueous mixture[J]. Journal of Chemical & Engineering Data, 2013, 58(5): 1244-1248. |
| [20] | 郭盛争. 甜菊糖冷却结晶过程研究[D]. 天津: 天津大学, 2020. |
| Guo S Z. Study on cooling crystallization process of stevioside[D]. Tianjin: Tianjin University, 2020. | |
| [21] | 齐莹莹. 磷酸一铵结晶热力学、动力学及工艺优化[D]. 天津: 天津大学, 2016. |
| Qi Y Y. Thermodynamics, kinetics and process optimization of monoammonium phosphate crystallization[D]. Tianjin: Tianjin University, 2016. | |
| [22] | Lewis A, Mazlan N A, Butt F S, et al. Aqueous co-solvent synthesis of zeolitic imidazolateframeworks: the impact of co-solvents in the crystal growth kinetics[J]. Materials Today Chemistry, 2024, 40: 102256. |
| [23] | 汤毅慧, 赵启文, 陈得清. 氯化钾在钾石盐溶液中的结晶动力学研究[J]. 青海大学学报, 2020, 38(5): 46-51. |
| Tang Y H, Zhao Q W, Chen D Q. Study on crystallization kinetics of potassium chloride in sylvite solution[J]. Journal of Qinghai University, 2020, 38(5): 46-51. | |
| [24] | 樊思琪. FOX-7的晶体形态学与结晶动力学研究[D]. 绵阳: 西南科技大学, 2021. |
| Fan S Q. Study on crystal morphology and crystallization kinetics of FOX-7[D]. Mianyang: Southwest University of Science and Technology, 2021. | |
| [25] | Abd-el Salam M N, Shaaban E R, Benabdallah F, et al. Experimental and theoretical studies of glass and crystallization kinetics of semiconducting As40Se40Ag20 chalcogenide glass[J]. Physica B: Condensed Matter, 2021, 608: 412745. |
| [26] | 洪振取. 工业结晶过程粒数衡算模型求解及其优化[D]. 青岛: 青岛科技大学, 2024. |
| Hong Z Q. Solution and optimization of particle number balance model in industrial crystallization process[D]. Qingdao: Qingdao University of Science & Technology, 2024. | |
| [27] | Zheng D, Wang J, Shen Y Q, et al. Size-dependent growth kinetics model for potassium chloride from seeded chloride solution[J]. International Journal of Chemical Reactor Engineering, 2023, 21(7): 801-813. |
| [28] | Liendo F, Arduino M, Deorsola F A, et al. Nucleation and growth kinetics of CaCO3 crystals in the presence of foreign monovalent ions[J]. Journal of Crystal Growth, 2022, 578: 126406. |
| [29] | Randolph A D, Larson M A. Transient and steady state size distributions in continuous mixed suspension crystallizers[J]. AIChE Journal, 1962, 8(5): 639-645. |
| [30] | Zheng Y Y, Shen Y Q, Ma Y L, et al. Nucleation, growth, and aggregation kinetics of KCl produced by stirred crystallization[J]. Applied Physics A, 2023, 129(9): 651. |
| [1] | Guoyue QIAO, Jutao LIU, Jianfei SUN, Qinqin XU, Jianzhong YIN. Study on crystallization kinetics of supported nanoparticles controlled by desorption of supercritical carbon dioxide [J]. CIESC Journal, 2021, 72(11): 5849-5857. |
| [2] | HAN Kuihua, QI Jianhui, LI Hui, LU Chunmei. Simulation and experiments of removal process of gaseous KCl by ammonium dihydrogen phosphate [J]. CIESC Journal, 2014, 65(3): 1093-1098. |
| [3] | RONG Yan1,2,HE Huiping2, CAO Wei1, SHEN Changyu1,CHEN Jingbo1. Numerical simulation of flow-induced crystallization of polymer based on two-phase model [J]. CIESC Journal, 2012, 63(7): 2252-2257. |
| [4] | SHI Yaoqi, XIN Zhong. Crystallization morphologies and non-isothermal crystallization kinetics of isotactic polypropylene modified by α/β compounded nucleating agents [J]. CIESC Journal, 2012, 63(4): 1274-1286. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||